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1. Summary 
 
ExoVista 2 is a hybrid Python/C++ software package based on an earlier IDL/C iteration that 
generates synthetic exoplanetary systems. ExoVista models exoplanet atmospheres in reflected 
light, stellar spectra using Kurucz stellar atmosphere models, and debris disks in scattered light 
using realistic spatial distributions and optical properties. Planets can be drawn from 
measured/extrapolated Kepler occurrence rates (Dulz et al. 2020) and are checked for basic 
stability criteria; debris disks are dynamically quasi-self-consistent with the underlying 
planetary system. All bodies are integrated with a Bulirsch-Stoer integrator to determine their 
barycentric velocities, positions, and orbits. The output product is a multi-extension FITS file 
that contains all of the information necessary to generate a spectral data cube of the system for 
direct imaging simulations of coronagraphs/starshades, as well as position/velocity data for 
simulation of RV and astrometric data sets, and transit and eclipse times. A more detailed 
description of the scientific model used by ExoVista is given in Appendix A. 
 

2. Philosophy & Numerical Approach 
 
ExoVista was designed with two primary numerical goals. First, it was designed for speed, to 
rapidly generate randomized planetary systems for a large number of stars/scenarios. To 
enable this, only simple checks are performed for dynamic stability of the planetary systems, 
and analytic models are used for the debris disks. Second, ExoVista’s output file size was 
minimized, such that all required information on the planetary system is contained in ≲25 MB. 
(Determined by the spectral resolution of the disk and the baseline of orbit integration.) To 
minimize file size, ExoVista does not save a simple spectral image cube. Instead, the output is a 
list of each point source’s position, velocity, orbit, and contrast/flux, combined with a contrast 
data cube of the debris disk (which has a smooth wavelength dependence and can be saved at 
lower spectral resolution). Transit and eclipse times are saved separately. As a consequence of 
recording disk contrast instead of disk flux, ExoVista cannot include thermal emission from the 
disk. We have provided a Python class (Scene.py) that loads the output FITS files to aid in 
extracting particular data sets from them. 
 

3. Installation and Use Cases 
 
ExoVista is designed to generate a universe of planetary systems based on varying assumptions 
about the overall exoplanet population. This use case requires familiarity with the complete 
ExoVista code and moderate to large computing facilities. Most of this guide is designed to 
provide a detailed description of ExoVista, its modules, and its dependencies for this use case. 
Additionally, a full API for ExoVista is provided in Appendix B. 
 
Many users will likely wish to interact only with the data products of ExoVista, using existing 
simulations of planetary systems to simulate direct imaging instruments, or for planet detection 



simulations. These users should download the existing FITS planetary scene files from 
https://tools.emac.gsfc.nasa.gov/exovista/ which can be read by any FITS tool such as astropy. 
Note: these files do not include transit detection. 
An example of an up-to-date output file (for our Solar system) is also provided in the “output” 
subdirectory. 
 
A detailed description of the FITS files produced by ExoVista is provided in Section 7. The 
included Scene.py also provides pre-programmed options for reading the FITS files. 
Meanwhile, the parsefits.py routine takes an output file for a single system and generates 
a new, matching input file. This can be useful for recomputing randomly-generated planetary 
systems with changes. 
 
To run the main modules of ExoVista, you must have a Python interpreter (Python 3.8 or higher 
recommended). You will also need to have installed, in addition to the “standard” suite of 
Python modules, the Python packages scipy, astropy, and cython. The multiprocessing package 
is needed if you wish to use ExoVista with parallel processing, although ExoVista can run as a 
serial code without it. 
 
ExoVista also requires a C++ compiler: 
For Linux users, g++ is usually available. 
For Mac OS users, it is recommended to install Apple’s XCode to obtain a compiler. 
For Windows users, it is recommended to use the Microsoft Visual C/C++ compiler. 

• Other tools such as those found in MinGW or Cygwin may work, but these have not 
been tested. 

 
To install ExoVista, download the current version of the ExoVista package from the Github 
repository into the desired directory on your local machine. Open a terminal window, navigate 
to the “src” subdirectory in the directory containing the ExoVista code, and compile the disk 
imaging and N-body integration modules by typing the following command: 
 
 python setup.py build_ext --inplace 
 
Cython should automatically call your C++ compiler and generate the files “wrapImage.cpp” 
and “wrapIntegrator.cpp” on your machine in the src subdirectory. If this fails, you may 
need to uncomment and edit the following lines in “setup.py” to reflect your local compiler 
environment (see the Cython documentation for more information): 
 
 import os 

os.environ['CC'] = 'gcc' 
os.environ['CXX'] = 'g++' 

 
Once the wrapImage and wrapIntegrator modules are built successfully, you will be ready 
to run all ExoVista modules. 



4. Running 
 
ExoVista can be run from the Python command line, but we recommend using a wrapper script 
to make full use of its features. This is especially important for larger target lists that require 
parallel processing. You may write your own wrapper based on the API described in Appendix B 
or modify the provided “ExoVista.py” and “ExoVistaSystem.py” scripts. 
 
ExoVista has two main modes of operation for its primary use case of generating simulated 
exoplanetary systems: 

1. Generate a single, user-defined planetary system to simulate observations of known 
planets. An example is provided in “ExoVistaSystem.py.” 

2. Create a universe of stochastically-generated simulated planetary systems based on a 
list of target stars and their properties. An example is provided in “ExoVista.py.” 
 

4.1 Generating a Single, User-Defined System 
 
“ExoVistaSystem.py” provides an example of how to create a user-defined planetary 
system. Most of the machinery in this script is designed to prompt for and check the format of 
an input file and should not be touched. 
 
ExoVistaSystem.py can be run with an input file name as a command line argument, but it 
will prompt for one if it is not given, or if the requested file fails. The input file should define all 
aspects of the planetary system, and the format for this file is described in Section 5.1. The 
provided “solar_system.dat” input file defines our own Solar system. 
 
The core functionality of the script is as follows: first, create a Settings object with the 
desired model parameters. Syntax: 
 

settings = Settings.Settings(<optional arguments>) 
 
Next, call the read_solarsystem() function with the Settings object and an input file 
name as an argument. Syntax: 
 
 read_solarsystem.read_solarsystem(settings,system_file=filename) 
 
The read_solarsystem() function converts the input file into the data structures used by 
ExoVista. The function outputs five new data structures (here described as s,p,a,d,c) plus an 
amended Settings object (which may have changed in response to the input file), which are 
used as inputs for generate_scene(). 
 
 
 



Next, call the generate_scene() function to produce observations of the system over time. 
Syntax: 
 
 generate_scene.generate_scene(s,p,a,d,c,new_settings) 
 
The parameters set by the Settings object are listed in Appendix B.9. Notable parameters for 
ExoVista users are: 

• pixscale: the pixel size of the image in arcseconds. Default is 0.002. 
• iwa: inner working angle of the coronagraph in arcseconds. Default is 0.015. 
• specres: the resolution of the star and planet spectra. Default is R=300. 
• specresdisk: the spectral resolution of the disk contrast cube. Default is R=10. 
• lambdamin and lambdamax: the minimum and maximum wavelengths of the spectra, 

respectively, in microns. Defaults are 0.3 and 1.0. 
• imin and imax: the minimum and maximum orbital inclination of the planets, in 

degrees. Default is 0.0. (Note: a near-zero inclination may cause numerical instability in 
the longitude of ascending node and argument of periastron, but the more important 
longitude of periastron will remain stable.) 

• timemax: the length of time to integrate the orbits of the planets, in years. Default is 
1.e-10. Typical values for a survey are 5-10. 

• dt: the time step at which to report the planetary positions and spectra, in years. 
Default is 10 days. 

• output_dir: the (relative) directory where the FITS files will be output. Default is 
“output.” 

• ncomponents: the number of components in the disk. (Note: this must remain at the 
pre-set value of ndisk for the debris disk to be handled correctly.) 

• randphase: if True, the Lambertian phase function for non-phase-resolved planetary 
albedos will be scaled by a randomized parameter based on the spread of phase 
functions in Solar system objects in Sudarsky et al. (2005). Default is False. 

• randrad: if True, a random spread will be added to the mass-radius relation used to 
generate planets, based on the “fractional dispersion” hyperparameters in the model of 
Chen & Kipping (2017). Radii are limited to be <14.31 R_E for planets with periods of 
>10 days (scaled with stellar luminosity). Note: not compatible with the “usebins” 
parameter described in Section 4.2. Default is False. 

• hires: if True, the disk spectral cube will be computed at the same resolution as the 
star and planetary spectra. This will take much more memory, but may be useful for 
generating emission and absorption disk spectra in future versions. It is recommended 
to use this option only with single-system input files. Default is False. 

 
The generate_scene() function is the main output function for ExoVista. It generates a FITS 
file for each planetary system in the data structure, which includes a spectral data cube for the 
exozodiacal disk, time-dependent spectra and orbital parameters for the star and each planet, 
and a list of transit and eclipse times. The output FITS format is described in Section 7. This FITS 
file may be used to model simulated observations as desired. 



4.2 Generating a Universe of Randomized Planetary System from a Target List 
 
“ExoVista.py” provides an example of how to generate a universe of planetary systems from 
a list of target stars. Most of the machinery in this script is used to set up Python’s 
multiprocessing functions and should not be touched. 
 
The input file for this script is the stellar target list, which must define all required parameters 
for the stars used by ExoVista. The format for this file is described in Section 5.2. The provided 
“master_target_list-usingDR2-50_pc.txt” input file includes a master list of roughly 
8,000 target stars within 50 pc of Earth from the LUVOIR/HabEx design studies. We have also 
provided a short target list of 8 stars called “target_list8.txt,” which makes testing code 
changes much easier. 
 
The notable features of this script (all hard-coded) for ExoVista users are: 

• parallel: if True, Python will distribute the stars evenly to all available cores on the 
system to speed the calculations in generate_scene(). Defaults to False if the 
“multiprocessing” module is not available. 

• maxcores: allows the user to set a maximum number of cores used instead of using all 
available cores. 

• Settings: as with the single-system script, this is an object that contains the settable 
code parameters. It is used as an argument by the generate_planets(), 
generate_disks(), and generate_scene() functions. 

• target_list_file: the target list used by ExoVista to generate planetary systems. 
This is the main input file for ExoVista, the format of which is described in Section 5.2. 

• load_stars(), generate_planets(), and generate_disks(): these three 
functions serve the same purpose as the read_solarsystem() function for a single 
system, generating the data structures used by the code to generate the scenes. These 
functions include optional arguments to change the configuration of the planetary 
systems, which are described in depth in the ExoVista API in Appendix B. 

• addearth: if True, generate_planets() will add an extra Earth twin (except with 
zero eccentricity) to every planetary system (orbit scaled with stellar luminosity) with 
negligible mass (so as not to disrupt stability or orbit integration). This can be useful if, 
for example, you wish to calculate exposure times based on the detectability of an Earth 
twin. Default is False. 

• usebins: if True, generate_planets()will use the rbound and abound arrays 
found in defaults.py to define bins based on planet types, and will ensure that 
exactly the expected number of planets of each type occur in each bin (subject to 
rounding). Default is False. 
 
 
 

 



4.3 Post-Processing Routines 
 
We have included several post-processing scripts in the ExoVista package. All of these scripts 
are backwards-compatible with earlier versions of the code, at least in that they will run 
successfully, although functionality may be limited. Note: all of the scripts will ignore the 
“extra” Earth twin in the FITS file if it is present. 
 
“parsefits.py” is a script that reads an output FITS file and generates a new, matching 
single-system input file, which can be used to replicate the (possibly randomized) scene 
described by the output file exactly. This will be useful for recomputing a scene for a given 
system with different parameters, especially for the (planned) disk absorption/emission 
spectrum upgrade. parsefits.py is run directly from the command line, and it accepts up to 
two command line arguments for the file to be read and the directory to search: 

• -f or -file <filename>: the FITS file to be read. Default behavior is to list them as a 
menu. 

• -o or -output <dir_name>: the directory of FITS files that is to be enumerated for 
the input prompt or searched for the input file. Default is “./output.” 

 
If no valid FITS file is given on the command line, parsefits.py it will produce a numbered 
list of the FITS files in the default (or specified) output directory and prompt you for a file. 
 
“Scene.py” is a module containing the Scene class, which can process an ExoVista output FITS 
file into useful NumPy arrays and output system properties and data with utility functions. A 
Scene object is instantiated with an input file name using the syntax: 
 

scene = Scene.Scene(inputfile) 
 
Data can be retrieved from the FITS file using the provided utility functions. The full list of 
functions is described in Appendix B.11. They follow the general format of: 
 

data = scene.getXYstar(time) 
 
“add_background.py” is a module that generates a random data cube of extragalactic 
background sources for a given scene based on the Haystacks model found at 
https://asd.gsfc.nasa.gov/projects/haystacks/downloads.html 
This module requires you to download Extragalactic background cubes 0 through 5 (may 
change if you change the wavelength coverage of the scenes) from the Haystacks webpage. It is 
called with an input file and optionally a time (in years) with the syntax: 
 

add_background.add_background(inputfile, time=0) 
 
This function returns a data cube of extragalactic fluxes with the same format as the disk data 
cube. Note that this module is still in active development, with plans to add background stars, 
target parallax, and proper motion. 



“readfits.py” is a plotting script that produces five plots of interest for a specified FITS file 
and prints the transit and eclipse times listed in the file. Similar to parsefits.py,  
readfits.py may be run directly from the command line. If it is run without specifying a file 
name, it will produce a numbered list of FITS files in the default output directory and prompt 
you to choose a file. 
 
readfits.py may be run with command line arguments, which control the file selected as 
well as various aspects of the plotting. These available command line arguments are: 

• -l or -lambda <wavelength>: a reference wavelength in microns. The disk and 
planet fluxes will each be plotted at the closest wavelength point to this value. Default is 
0.5. 

• -m or -mirror <diameter>: the size of the telescope mirror circumscribed diameter 
in meters. Default is 8.0 (based on the LUVOIR-B concept). 

• -g or -gain <factor>: the brightness of the disk will be multiplied by this value to 
highlight faint regions, at the cost of saturating bright regions. Default is 1.0. 

• -ld or -logdisk: if included, the disk brightness will be plotted based on a logarithmic 
scale rather than a linear one. Default is False. 

• -pr or -planetbright: if included, the brightness of each planet will be scaled 
relative to the maximum of its own phase curve. Default is False. 

• -c or -color: if included, the planets will be color-coded based on type. (The colors are 
hard-coded at the top of the readfits.py script.) Default is False. 

• -f or -file <filename>: the FITS file to be read. Default behavior is to list them as a 
menu. 

• -o or -output <dir_name>: the directory of FITS files that is to be enumerated for 
the input prompt or searched for the input file. Default is “./output.” 

 
The plots produced by readfits.py are: 

• An ideal simulated image of the scene in the 250x250 pixel frame at t=0. Disk contrast is 
indicated by relative brightness, with the region within 1.5l/D of the star blacked out by 
an occulting disk, similar to a coronograph simulation. 

• A plot of disk contrast versus position on the x-axis, again with the central region within 
1.5l/D of the star blacked out. 

• A plot of planet contrast spectra for all planets at t=0. 
• A plot of planet contrast phase curves at the reference wavelenth for all planets over 

the length of the orbital simulation. 
• A plot of planet trajectories in the sky plane (relative to the host star) over the length of 

the orbital simulation. 
 
Any transits and eclipses listed by the FITS file will have their ingress and egress times printed to 
the command line. It will also list any transits or eclipses that are in progress at the start or end 
of the simulation. 
 



“readfits-anim.py” is a build of “readfits.py” that produces an animated version of the 
first plot (the image of the scene including disk and planets). By default, it runs through all of 
the timesteps in the FITS file at 60 fps. 
Note: this script requires FFmpeg to be installed, along with the Python ffmpeg module. 
 
“readfits-flipbook.py” is a build of “readfits.py” that outputs an animated version of 
the scene to the screen via multiple still images. (Not a single animation file.) Note: this script 
outputs directly to the screen and works at runtime only. No output file is produced. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Input Files 
 
5.1 Stellar Parameters and Naming Format 
 
ExoVista uses a specific set of parameters for its stellar models. These are: 

• ID (a numerical index) 
• HIP (Hipparcos Catalog number) 
• TYC (Tycho or Tycho-2 catalog number. Note: this is the recommended column in which 

to place proper names as an alternative to the catalog number.) 
• Dist (distance in pc) 
• M_V (absolute V-band magnitude) Note: this is used only for calculating Vmag in single 

system mode when it is absent. 
• Apparent magnitudes Umag, Bmag, Vmag, of Rmag, Imag, Jmag, Hmag, and Kmag 
• Type (spectral type. Note: stars that are not Main Sequence or a subgiant will be 

skipped in the target list.) 
• Lstar (luminosity in M_Sun. Note: stars with mass >100 M_Sun will be skipped in the 

target list.) 
• Logg (surface gravity in cm s-2. Note: stars with logg>5.25 will be skipped in the target 

list.) 
• Teff (effective temperature in K. Note: stars with Teff<3500 K will be skipped in the 

target list. Stellar models for higher gravity and lower Teff are in development.) 
• Angdiam (angular diameter in mas) 
• Mass (mass in M_sun) 
• Rstar (radius in R_sun) 
• RA and Dec (right ascension and declination in decimal degrees) 
• pmRA and pmDec (proper motion in mas/yr) 
• BmV (B-V color) 
• PA (position angle of orbital plane) 
• I (inclination of orbital plane) 
• Spectrum (a spectrum file name to use in place of the built-in spectral models)  

 
In order to handle input files from different sources, which may have different formats, 
ExoVista is designed to handle many common variants of the names of the stellar parameters in 
the input files. However, some limitations still apply. The rules for stellar parameter names are 
as follows: 

• Parameter names may not contain spaces. 
• Names are not case-sensitive. 
• Names are stripped of underscore characters before parsing. 
• ExoVista’s internal parameter names are compared only with the beginning of the 

names in the input files, not with internal substrings. 
• Common variants are allowed: SpT for Type, Lum for Lstar, mstar for mass, and rad 

for rstar (RA is de-aliased from rad). 



5.2 The Planetary System File 
 
Note: in this file, if duplicate stellar parameters are included, only the last entry of each 
duplicate will be used. 
 
The input file for a user-defined planetary system requires three sections to be specified in 
order: the star, the planets, and the (exozodiacal) disks, followed by an optional fourth section 
for observational settings. (This order is required because the data structures for the later 
sections depend partially on the earlier ones.) 
 
The first line of the input file should read: 

Star 
ExoVista expects to see this keyword before any parameters. After this, the parameters for the 
stellar model should be listed one per line. For example: 
 ID 999 
 Type G2V 
 Lstar 1.0 
Not all possible parameters are needed to build the stellar model, but a few are required. The 
required parameters are: 

• Lstar 
• Dist 
• Type 
• Either Vmag or M_V (Vmag only in the stellar target list) 
• Either Umag or Bmag 
• At least one of Rmag, Imag, Jmag, Hmag, or Kmag 

 
Note: ExoVistaSystem.py will use default values (usually zeros) if any of these parameters 
are missing, which may produce unstable behavior. 
 
Three optional parameters are also of particular interest: 

• ID; This index number is placed at the beginning of the output filename. If it is not 
included, it will default to zero for a single system and index starting from zero for a list 
of targets. Note: the ID should be a positive number, as the hyphens in negative 
numbers cause parsing issues in the post-processing routines. 

• A catalog number (usually HIP) is not technically required, but it is likely to cause 
confusion in the output filenames if it is not included. 

• Spectrum allows ExoVista’s internal stellar model spectrum to be replaced by a real 
spectrum. The spectrum file should have two columns for wavelength in nm and stellar 
surface flux in erg s-1 cm-2 Hz-1 sr-1. The included modelspectrum.dat file provides an 
example spectrum for testing purposes, but it is based on ExoVista’s own spectral model 
for a Sun-like star. 

 
 
 



The second section is denoted by the keyword: 
 Planets 
The next line is a header of the planet parameters in any order, which is then followed by a 
table of all of the planets in the system. Note: a star cannot have more than 30 planets. There 
should be 9 columns in this section. The planet parameters are: 

• M (mass in M_Earth) 
• R (radius in R_Earth) 
• The six orbital parameters, a, e, i, longnode, argperi, and meananom (in AU and 

decimal degrees where applicable) 
• albedo (the albedo file for the planet found in the “geometric_albedo_files” 

subdirectory, excluding suffix) 
 

The third section is denoted by the keyword: 
 Disks 
The next line is a header of disk parameters in any order, which is then followed by a table of all 
of the disk components. Note: a star cannot have more than 3 disk components. The disk model 
is described in detail in Appendix A.3. There should be 12 columns in this section. The disk 
parameters are: 

• nzodis (disk surface density at the location of an Earth twin, as a multiple of the 
zodiacal reference disk of 22 mag/arcsec2) 

• The four shape parameters, r, dror, rinner, and hor (in AU where applicable) 
• The six scattering parameters, g0, g1, g2, w0, w1, and w2 
• composition (the disk material found in the “lqq_files” subdirectory) 

 
The fourth section may be omitted. If present, it is denoted by the keyword: 
 Settings 
After this, similar to the “Star” section, the parameters should be listed one per line. Any 
parameters in the Settings dataclass may be included, but none are required. These settings 
are needed to recompute an existing scene with the same simulated observations and do not 
affect the planetary system directly. (The output of parsefits.py will include all the needed 
parameters automatically.) 
 
 
 
 
 
 
 
 
 
 
 



5.3 The Stellar Target List 
 
Note: in this file, if duplicate stellar parameters are included, only the first entry of each 
duplicate will be used. 
 
The stellar target list input file requires only the stellar parameters to be defined. The planets 
and disks will be defined procedurally. The first line of this file should be a list of columns in the 
stellar table. Each column name should be separated by whitespace and should have no 
internal spaces. 
 
The required column names in this file are the same as the required stellar parameters in the 
single system file listed in Section 5.1, except that only Vmag may be used and not M_V.  
 
Note: ExoVista.py will halt if any of the required parameters are missing. 
 
However, some additional parameters may be required for specific use cases, such as sky 
coordinates and proper motions. In each subsequent row, the parameters should be separated 
by commas “,” or vertical bars “|”. Omitted entries in the table should be listed as “NaN”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6. Data Files 
 
A number of supplementary data files are used by ExoVista to generate planet and disk 
distributions and compute scenes. You may wish to modify, add to, or replace some of these 
files to customize your simulated universe. These supplementary files are summarized below. 
“planetbins.dat” and “albedo_list.csv” are the simplest files to modify and are thus 
described in detail. 
 
6.1 Grid of Planet Types 
 
planetbins.dat contains a grid of planet types in mass-semi-major axis-space. If usebins is 
enabled, the bounding boxes for this grid are used by generate_planets() to create exact 
expected numbers of planets for each desired planet type. 
 
Note: ExoVista expects the smallest and largest bin edges in each array to be wider than the 
actual distribution of planets. If this is not the case, it may result in unstable behavior at the 
edges of the distribution. 
 
This file should begin with the keyword Radius on the first line. 
 
The second line is read in as the rbound array and contains a 1-D array of bin edges for planet 
types in radius space, in Earth radii. The included version of planetbins.dat defines bins of 
sub-Earths, super-Earths, sub-Neptunes, Neptunes, and Jupiters. 
 
Note: it is not possible to include a bin edge between 12.28 Earth radii and the maximum planet 
size (14.31 R_E before the radius spread is applied). This is necessary to convert radius bins to 
mass bins correctly. 
 
The third line should contain a keyword either of Flux or Orbital_Distance. After this 
should be a table of corresponding values either of semi-major axes in AU (normalized to 1 
L_sun) or of stellar instellations in F_earth. If the keyword Flux is included, the table is 
converted to semi-major axes by the equation a = 1/sqrt(flux). 
 
This table is read in as the abound array, and it should contain one fewer line than the length 
of rbound (that is, one for each radius bin). This allows each radius bin to have a different set 
of semi-major axis bins. The included version of planetbins.dat defines 5 bins with the 
middle 3 considered as “standard” definitions of hot, warm (habitable zone), and cold planets. 
 
 
 
 
 
 



6.2 Bounding Boxes for Albedo Files 
 
albedo_list.csv contains a list of albedo files to assign to planets and a bounding box for 
each in radius-semi-major-axis space in which they apply. When planets are generated by the 
code, each planet will be randomly assigned an albedo file from the set that overlap its position 
in R-a-space. 
 
albedo_list.csv may be user-modified in order to define custom planet types. This file 
consists of a header followed by a list of planet types, and it requires seven columns: 

• Files: the albedo filename associated with each planet type in the 
geometric_albedo_files subdirectory, excluding suffix. 

• rmin and rmax: the minimum and maximum radius for that planet type, in Earth radii. 
• amin and amax: the minimum and maximum semi-major axis for that planet type 

(normalized to 1 Lsun), in AU. 
• prob: the probability weight for that planet type. When an albedo file is assigned, the 

weights of all of the eligible planet types for that planet will be summed and normalized, 
and a file will be randomly selected from that distribution. 

• EEC: a Boolean value for whether the planet type is an exo-Earth candidate (EEC). EECs 
have an adjusted lower radius bound based on their instellation, changing rmin to 
rmin/sqrt(a), as small planets can more readily retain an atmosphere when they are 
colder. Note: by default, EEC albedo files completely override non-EEC albedo files. Non-
EEC albedo files can be assigned a non-zero weight by adjusting the eecprob parameter 
in Settings to less than 1.0. 

 
The default bounding boxes for the included list of albedo files (solid) and planet types (dashed) 
are shown in Figure 1. 
 
6.3 Variation in Phase Functions 
 
phase_spread.dat is a table of bounds for the scaling factor for the phase function. If 
randphase is enabled, for isotropic albedo files (Lambertian-defined phase functions), each 
planet’s phase function will be randomly scaled from the Lambertian between upper and lower 
bounds described by this file. This table begins with the header “Phase_Function” and is 
followed by a table of three columns: 

• Phase angle in degrees. 
• Minimum scale factor on the Lambertian. 
• Maximum scale factor on the Lambertian. 

The included version of this file is based on the spread in phase functions of observed Solar 
system objects presented in Sudarsky et al. (2005). (See Figure 2.) 
 
 
 
 



6.4 Stellar Properties and Spectra 
 
mamajek_dwarf.txt is a table of median properties of Main Sequence stars by spectral type. 
ExoVista interpolates from this table to convert B-V colors from the stellar parameters input file 
to mass and effective temperature. Surface gravity is then computed from mass and radius. The 
citations for this table are listed in the file. 
 
fp00k2odfnew.pck is a table of stellar spectrum models as a function of Teff and logg. These 
models are interpolated by ExoVista to generate the spectrum for each star in the input file. 
This file is based on the Castelli & Kurucz ATLAS9 stellar atmosphere models (IAU Symposium 
210, 2003). Note: this table does not include models for log(g)>5.25, nor for Teff<3500 K. Stars 
outside these limits will be excluded. 
 
Note: the stellar spectrum models are slated for updating in the near future. 
 
6.5 Debris Disk Properties and Spectra 
 
nominal_maxL_distribution-Dec2019.fits is a random distribution of 300,000 
exozodiacal light fluxes assigned to disks by ExoVista, based on the LBTI HOSTS survey (Ertel et 
al., 2020). 
 
The lqq_dir subdirectory contains optical cross section tables for many exozodiacal disk 
compositions. Each file contains absorption and scattering cross sections as a function of 
wavelength for a specific particle size and composition. These are then compiled into complete 
tables for a single composition by the generate_scene.load_lqsca() and 
generate_scene.load_lqabs() functions. 
 
Note: a wider selection of dust compositions is in development. 
 
 
 
 
 
 
 
 
 
 
6.6 Albedo File Formats 
 
The geometric_albedo_files subdirectory contains albedo spectra for many planetary 
types. These files are assigned to planets by the 
generate_planets.assign_albedo_files() function, and they are used to compute the 
planetary spectra. 



 
Three types of albedo files can be read by ExoVista: 

1. Isotropic albedo: a simple 2-column file listing a spectrum of wavelength in the first 
column and albedo in the second column. (Isotropic albedos are converted to phase-
resolved ones using a Lambert function.) 

2. Phase-resolved albedo: these include a header listing the specific phase angles in 
degrees and the number of wavelength points at which the albedo is computed. All 
header rows must begin with a # symbol, and the list of phases must have the form: 
 

#PHASES: <phases separated by spaces> 
 
Each line after the header lists a wavelength followed by the albedo as a function of 
phase. 

3. Latitude-longitude-resolved albedo: these include a header listing the specific 
longitudes (phases) and latitudes (inclinations) at which the albedo is computed, in 
degrees, along with the number of wavelength points. All header rows must begin with 
a # symbol, and the latitude and longitude lists must have the form: 
 

#LATITUDES: <latitudes separated by spaces> 
#LONGITUDES: <longitudes separated by spaces> 

 
Each line after the header includes a wavelength and a linearized array of albedo as a 
function of latitude and longitude (longitude on the inner dimension). 

 
Note: a wider selection of albedo files is in development. 
 
6.7 Planet Occurrence Rates 
 
The occurrence_rates directory contains tables of occurrence rates of exoplanets based on 
Dulz et al. (202), which are used to generate random planets with the correct distribution of 
parameters. Standard, optimistic, and pessimistic occurrence rates are included. The choice of 
occurrence rates used may be changed by setting the bound argument in 
generate_planets.load_occurrence_rates() to “upper” or “lower.” The standard 
rates are used by default. 
 
The default “Nominal” occurrence rates are shown in Figure 3, and the default mass-radius 
relation from Chen & Kipping (2017) is shown in Figure 4. 
 



 
Figure 1: Bounding boxes for default albedo file assignments (solid) and planet types (dashed) 
set by the included data files. 
 



 
Figure 2: Phase curves of Solar system objects from Sudarsky et al. (2005), used for the default 
bounds in the phase function spread. 
 

 
Figure 3: Default “Nominal” planet occurrence rates from Dulz et al. (2020). 
 
 
 
 



 
Figure 4: The default mass-radius relation from Chen & Kipping (2017). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7. Scientific and Computational Models 
 
7.1 Stellar Target List and Stellar Model 
 
The stellar target list for ExoVista is intended to be user-defined. However, the 
master_target_list-usingDR2-50_pc.txt file provided with the code contains the 
HabEx/LUVOIR master target list generated by combining the Hipparcos and Gaia DR2 target 
lists within 50 pc. Note: this target list is not intended to be accurate on a star-by-star basis, and 
indeed, ExoVista internally uses model spectra rather than observed spectra by default to 
simulate the stars. However, it should be representative of nearby main sequence and subgiant 
stars. 
 
7.2 Planet Generation 
 
Planets are generated by ExoVista with orbital parameters defined relative to the system 
midplane orientation. Planets are drawn from the occurrence rate maps of Dulz et al. (2020) in 
mass-semi-major axis space (for a 1 L_sun star), converted to a probability distribution. If bins 
for planet types are not used, these maps are divided into a regular grid. Applying bins imposed 
an extra set of bin edges on this grid, and the occurrence rate in each “pixel” is scaled according 
to its size in log-log space. 
 
The Monte Carlo draw defines a 3-D grid of random numbers, covering each pixel in the 2-D 
occurrence rate map and the total number of stars. Random numbers smaller than the 
occurrence rate in a given pixel assign one planet to that star with the corresponding 
parameters. Note: this means that the occurrence rate map must be a high enough resolution 
that the expected number of planets per star is <1 for every pixel. A planet’s exact parameters 
within its pixel are assigned randomly in log-log space. 
 
Planets are drawn from the mass grid even though radii are better known because M(R) is not a 
monotonic function, so there is ambiguity in converting radius to mass as opposed to the 
inverse. The default mass-radius relation is a strictly 1-dimensional function based on Chen & 
Kipping (2017). If randrad is enabled, random variation will be added to this function based on 
the “fractional dispersion” hyperparameters from that paper. (A limit of 14.31 R_Earth is 
applied for planets with periods of >10 days, scaled with stellar luminosity.) 
 
When generating the pixel map of drawn planets per star, if planet types are specified, ExoVista 
will check the number of planets generated for each type, and it will randomly add planets to 
empty (3-D) pixels or remove them from filled pixels until the number for that planet type 
equals the expected number. Orbital elements are then assigned randomly. However, 
eccentricities are set to zero by default, and inclinations are restricted to <5 degrees by default. 
 
Once the planets are generated, they are randomly assigned to stars in the target list, with their 
semi-major axes being scaled according to the host star’s luminosity. After adding the planets 



to stars, their orbital stability is checked based on a mutual Hill sphere heuristic. For any pair of 
planets with D > 6, where D = separation/mutual Hill radius, the less massive planet is removed. 
After this stability check, new planets are drawn to replace the removed ones, and the process 
is iterated until all planets in the draw have been assigned and are stable. (If it is not possible to 
assign all of the planets in the draw, the loop halts after 50 iterations pass with no net planets 
successfully added, or after 200 total iterations.) 
 
Note: Dulz et al. (2020) adopted a stability criterion of D > 9, but this greatly slows the process 
of assigning planets due to the large number of rejections, so ExoVista adopts a more lenient 
criterion. The resulting systems are expected to be “plausible,” but are not necessarily stable on 
Gyr timescales. 
 
Note: ExoVista does not assume any correlation between planet types or multiplicities within a 
given system. All planets are equally likely to occur with any type of neighbors (subject to the 
stability criterion). 
 
7.3 Disk Model 
 
The debris disk data structure contains 3 parameters not listed in the individual planetary 
system files. These are n, the number of disk components, and longnode and i, which define 
the disk orientation. At present, longnode and i are not implemented, and all disks are 
assigned the same orientation as the system midplane. 
 
Note: ExoVista assumes optically thin disks, such that surface brightness is proportional to 
density. By default, each star is assigned a 2-component debris disk, in which the inner 
component is required and corresponds to our Solar system’s Zodiacal disk. This inner 
component is also assigned an absolute limit in extent from 0.5-5.0 AU. The outer component is 
assigned an extents limit of 5-50 AU, and a third component, if present, is assigned an extents 
limit of 50-500 AU. These values can be changed by using the r_min and r_max parameters 
in Settings. 
 
The inner component of each disk is randomly assigned a density relative to our Zodiacal disk 
based on the exozodi distribution of on the LBTI HOSTS survey (Ertel et al., 2020), which has a 
median of 3 zodis. The outer component is assigned a density that is a multiple of the inner 
component between 0.2 and 5.0, randomly distributed in log-space. The disk composition is 
randomly selected from the available compositions in the lqq_files directory. 
 
For each star, the disk model is structured with a belt shape in a location selected from the 
regions of stability between planets within that disk’s extents limit. “Stable” regions are defined 
as all regions more than 3 Hill radii away from any planet. This belt is described by 4 shape 
parameters: 



• r: the radius of peak density (i.e. the center of the belt), selected randomly (in log-
space) from all stable radii within the disk’s extents limits, subject to a minimum 
fractional belt width of dr/r > 0.05. 

• dror: the fractional width of the belt, dr/r, randomly selected from the range 0.05-0.30, 
subject to the stability limits. 

• rinner: the inner truncation radius of the disk caused by gravitational perturbations by 
interior giant planets. This is set to zero if there are no planets interior to r with a mass 
>100 Earth masses. If interior giant planets are present, it is set to 
min(r,1.1*a*(1+e)) for the most massive interior planet. 

• hor: the vertical fractional scale height of the disk, h/r, randomly selected from the 
range 0.03-0.2. 

 
Note: if no value of dror in the allowed range meets the stability criteria, the disk density is 
reset to zero, and no disk is included. 
 
The disk density within the belt is assigned a Gaussian density distribution with circumstellar 
radius r, and a Dohnanyi particle size distribution. Exterior to the belt, the density falls off with 
a power law of r^-1.5. Interior to the belt, the density falls off based on a collisional Poynting-
Robertson drag model from Wyatt. An additional parameter, eta, is the ratio of the Poynting-
Robertson timescale to the collision timescale, and is computed analytically. Finally, interior to 
the truncation radius (if present), the density falls off faster, with a power law of r^3. 
 
Note: ExoVista does not model mean motion resonant ring structures, and all disks are assumed 
to be circular and azimuthally symmetric. This is necessary in part to avoid the need to model 
the disk over time. 
 
Asymmetric scattering of starlight off dust particles in the disk is modeled by a linear 
combinationsof 3 Henyey-Greenstein phase functions. The asymmetry parameters of these 
functions, g0, g1, and g2, are randomly selected from the ranges 0.8 to 0.995, 0.35 to 0.8 and  
-0.30 to 0.35, respectively. The weights on the scattering functions are randomly selected such 
that w0 falls in the range 0.4 to 0.8; w1 falls in the range 0.1 to 1-w0, and w2=1-w0-w1. 
 
ExoVista models only scattering of light by the disk, not emission or absorption, due to the 
lower spectral resolution needed to accurately model scattering. Additionally, it does not rely 
on Mie scattering due to the computationally-intensive modelling required for it and instead 
reads scattering coefficients from files. The full scattering spectrum is assembled from 
coefficients for many different grain sizes with a size resolution of s/ds = 5. The range of grain 
sizes is determined by the files in lqq_dir, which extends from the blowout size (assumed to 
be 0.5 microns for all stars) to 100 times the maximum wavelength observed (thus, by default 
100 microns). 
 
Plots illustrating the effect of the four disk shape parameters (nzodis, r0, dror, and rinner) 
on the radial disk surface density profile are shown in Figure 5. 
 



 
Figure 5: Example disk surface density profiles demonstrating the effect of the shape 
parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8. Output File Format 
 
For each star, generate_scene.generate_scene() produces a single FITS file. The sizes of 
these files vary with the spectral resolution of the planets and disks and the integration time for 
the N-body integrator. For the default spectral resolutions and an integration time of 10 years, 
the filesize is about 25 MB. Ideally, this will be roughly the largest file size produced by 
“standard” use cases. 
 
The FITS files have multiple extensions. The data contained in each extension is as follows: 
 

Extension # Data description 
0 Vector of wavelength values for star and planets 
1 Vector of wavelength values for debris disk 
2 3D debris disk contrast cube (x * y * lambda + noise map) 
3 2D transit/eclipse events array (num. events * 4) 
4 2D star data array (time * position + orbit + spectrum) 
5…N_EXT 2D planet data array (time * position + orbit + spectrum) 

 
Extension 0: Wavelength values for star and planets 
Description: a 1D vector containing the wavelengths (in microns) at which stellar flux and planet 
contrast were calculated 
 
Key header parameters: 
NAXIS1: length of wavelength vector (# of wavelengths) 
VERSION: the version number of the code (used to set up the post-processing routines) 
N_EXT: maximum extension number (with planet data being in extensions 4 – N_EXT) 
SPECRES: spectral resolution of wavelength vector 
LAMMIN: minimum wavelength 
LAMMAX: maximum wavelength 
 
Extension 1: Wavelength values for debris disk contrast cube 
Description: a 1D vector containing the wavelengths (in microns) at which disk contrast was 
calculated 
 
Key header parameters: 
NAXIS1: length of wavelength vector (# of wavelengths) 
SPECRES: spectral resolution of wavelength vector 
LAMMIN: minimum wavelength 
LAMMAX: maximum wavelength 
 
Extension 2: Debris disk contrast cube 
Description: a 3D cube (xpix * ypix * wavelengths+1) of disk flux divided by star flux. To convert 
this back into a disk flux, interpolate the cube to the desired wavelengths, then multiply by the 



stellar flux at those wavelengths. Note: The number of entries in the last dimension is equal to 
the number of wavelengths+1 because the last entry is not a contrast map, but a 2D map 
estimating the fractional numerical noise in the contrast calculations. 
 
Key header parameters: 
NAXIS1: # of pixels in x dimension 
NAXIS2: # of pixels in y dimension 
NAXIS3: # of wavelengths+1 
SPECRES: spectral resolution of wavelength vector 
PXSCLMAS: pixel scale in milli-arcseconds 
IWA: inner working angle of the coronagraph in arcseconds 
DUSTBLOW: the dust blowout particle size in microns 
TSUB: the dust sublimation temperature in kelvins 
LNGND-N: longitude of the ascending node of the Nth disk component (degrees) 
I-N: inclination of the Nth disk component relative to system midplane (degrees) 
NZODIS-N: density in zodis of the Nth disk component 
R-N: circumstellar distance of the peak density of the Nth disk component (AU) 
DROR-N: value of the normalized Gaussian peak width of the Nth disk component 
RINNER-N: value of the inner truncation radius of the Nth disk component (AU) 
ETA-N: ratio of PR drag time to collision time for the blowout size for the Nth disk component 
HOR-N: normalized scale height for the Nth disk component 
G0-N – G2-N: 3 values of scattering asymmetry parameters for the Nth disk component 
W0-N – W2-N: 3 weights for each HG scattering phase function for the Nth disk component 
MINSIZE: minimum grain size considered 
MAXSIZE: maximum grain size considered 
 
Extension 3: transit and eclipse times 
Description: a 2D array (number of events * 4) containing the time of each ingress and egress of 
a planet in transit or secondary eclipse, the number of the planet involved, and two values 
indicating the specific type of event. The data structure is organized as follows: 
 data[0,i]: the time of the event in days 
 data[1,i]: the numerical designation of the planet involved in the event 

data[2,i]: the position of the planet before the event: +1 for transit, -1 for eclipse, 
or 0 for neither 
data[3,i]: the position of the planet after the event: +1 for transit, -1 for eclipse, or 
0 for neither 
 

If a planet is in transit or eclipse at the start or end of the integration time, the third and fourth 
values will be (+1, +1) or (-1, -1), respectively. 
If there are no transits or secondary eclipses in the integration time (which is likely to be the 
case for most systems), this structure will contain a single event with all values set to 0. 
 
 
 



Key header parameters: 
NAXIS1: the number of ingress and egress events recorded 
NAXIS2: the number of entries for each event (4) 
BASELINE: the length of integration time for the file, in days 
 
Extension 4: star data 
Description: a 2D array (time x wavelengths+15) containing the time, position, orbit, and 
spectrum of the star for all time values. The data structure is organized as follows: 
 data[i,j]: ith time value, jth data value 
 data[i,0]: simulation time (years) 
 data[i,1]: x coordinate of star (in pixels) at ith time 
 data[i,2]: y coordinate of star (in pixels) at ith time 

data[i,3:9]: heliocentric orbital elements at ith time (set to zero for the star, but 
used for the planets) 
data[i,9:15]: barycentric x, y, z positions (in AU) and barycentric vx, vy, vz velocities 
(in AU/yr) at ith time 
data[i,15]: placeholder value for phase angle 

 data[i,16:16+nlambda]: spectrum of star (in Jy) at ith time 
 
Key header parameters: 
NAXIS1: # of time values 
NAXIS2: # of data values (wavelengths+15) for each time value 
PA: position angle of system midplane (degrees) 
I: inclination of system midplane (degrees) 
STARID: an internal catalog ID # for the star 
RA: right ascension of star (decimal degrees) 
DEC: declination of star (decimal degrees) 
*MAG: stellar empirical magnitude in the * filter band 
M_V: absolute V-band magnitude of star 
DIST: distance to star (pc) 
TYPE: spectral type of star 
LSTAR: bolometric stellar luminosity (solar luminosities) 
TEFF: stellar effective temperature (K) 
ANGDIAM: angular diameter of star (mas) 
MASS: stellar mass (solar masses) 
LOGG: log(stellar gravity) (cm/s2) 
RSTAR: stellar radius (solar radii) 
WDS_SEP: most recent separation of companion in WDS catalog, if it exists (arcsec) 
WDS_DMAG: delta mag of companion in WDS catalog, if it exists 
PMRA: proper motion in RA (mas/yr) 
PMDEC: proper motion in DEC (mas/yr) 
PXSCLMAS: pixel scale (mas) 
 
 



Extension 5 – N_EXT: planet data 
Description: a 2D array (time x wavelengths+15) containing the time, position, orbit, and 
contrast spectrum of each planet for all time values. The data structure is organized as follows: 

data[i,j]: ith time value, jth data value 
 data[i,0]: simulation time (years) 
 data[i,1]: x coordinate of planet (in pixels) at ith time 
 data[i,2]: y coordinate of planet (in pixels) at ith time 

data[i,3:9]: heliocentric orbital elements at ith time; semi-major axis (AU), 
eccentricity, inclination (degrees), longitude of ascending node (degrees), argument of 
pericenter (degrees), mean anomaly (degrees) 
data[i,9:15]: barycentric x, y, z positions (in AU) and barycentric vx, vy, vz velocities 
(in AU/yr) at ith time 
data[i,15]: phase angle of the planet at ith time in degrees 

 data[i,16:16+nlambda]: contrast spectrum of planet at ith time 
 
Key header parameters 
NAXIS1: # of time values 
NAXIS2: # of data values for each time value 
M: planet mass (Earth masses) 
R: planet radius (Earth radii) 
ALBEDO_F: geometric albedo filename 
PXSCLMAS: pixel scale (mas) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix: ExoVista API 
 
 
A.1 Module load_stars 
 
 
load_stars.load_target_list(target_list_file) 
 
Internal function used by load_stars() to read in the target list file and convert it to a 
DataFrame for further processing. It also computes color values and angular diameters. 
 
Parameters: 
 target_list_file: string; file name for list of target stars 
 
Returns: 
 target_list: DataFrame; the table of stellar parameters for stars that pass the filter 
 
 
load_stars.load_stars(target_list_file) 
 
Reads in a table of target star parameters and converts it to the DataFrame format used by 
ExoVista. It filers out stars that have insufficient data or are outside the limits for ExoVista. It 
also computes necessary the derived quantities, mass, Teff, rstar, and logg for each star. 
 
Parameters: 
 target_list_file: string; file name for list of target stars 
 
Returns: 
 target_list: DataFrame; the table of stellar parameters for stars that pass the filter 
 

nexozodis: array (floats) or None; a list of exozodiacal densities to replace the 
randomly generated ones. If the “nexozodis” is not included in the target list file, this 
has a value of None. 

 
 
 
 
 
 
 
 
 



A.2 Module generate_planets 
 
 
generate_planets.mass_to_radius(M, rng, a=None, randrad=False) 
 
Converts planetary masses to radii using a three-part piecewise empirical function. This is used 
to convert occurrence rates from mass-space to radius-space. 
 
Parameters: 
 M: array (floats); an array of planet masses. 
  

rng: numpy.random.default_rng object; random number generator created by 
generate_planets(), which carries the same random seed over to 
mass_to_radius(). 

 
a: array (floats); an array of semi-major axes of planets, scaled with stellar luminosity. 
This is used to allow hot Jupiters to bypass the radius limit if randrad is applied. Default 
behavior does not allow any planets to bypass the radius limit. 

  
randrad: bool; if True, random variation is added to the computed planet radii, carried 
over from the main Settings object; default is False. Note: not compatible with 
usebins. 

 
Returns: 
 R: array (floats); a corresponding array of planet masses. 
 
  
generate_planets.radius_to_mass(R) 
 
Converts planetary radii to masses using the inverse of the piecewise mass-to-radius function. 
This is used to convert boundaries for planet types from radius-space to mass-space in order to 
divide the occurrence rate grid accurately. Note: because the inverse function M(R) is not 
monotonic, this function cannot be evaluated for radii >12.28 R_J and will return a value of -1 
for these radii. 
 
Parameters: 
 R: array (floats); an array of planet radii. 
 
Returns: 
 M: array (floats); a corresponding array of planet radii. 
 
 
 



generate_planets.generate_planets(stars, settings, bound='', 
nomcdraw=False, addearth=False, usebins=False, subdivide=1) 
 
Creates a randomized array of planets and orbital parameters associated with the input star list. 
Each star is given a list of 30 planets to ensure that there are enough to cover all of the planets 
assigned to the star. Unassigned slots are set to zeros. The planets are generated iteratively, 
first creating a random sample of the expected number of planets and assigning them to the 
stars, then removing those that are dynamically unstable. This process is then repeated until 
the final number of planets matches the expected number, or no new planets can be added 
without creating dynamical instabilities. 
 
Parameters: 
 stars: DataFrame; a table of stellar parameters 
  
 settings: Settings object; contains all of the settable code parameters. 
 

bound: string, optional; set to ‘upper’ or ‘lower’ to use the optimistic or pessimistic 
bounds of the planet occurrence rates, respectively. Default is ‘’ (empty string), which 
uses the nominal occurrence rates. 
 
nomcdraw: bool, optional; if True, ExoVista bypasses the Monte Carlo draw and assigns 
planets to stars strictly based on occurrence rates. Default is False. 
 
addearth: bool, optional; if True, ExoVista will add an Earth twin to every planetary 
system. These Earth twins have negligible mass, so they do not disrupt stability or disk 
structure. Their orbital distance is scaled to the luminosity of the star, and they have 
zero eccentricity so that the phase angle is exactly lined up with quadrature at t=0. 
Default is False. 
 
usebins: bool, optional; if True, ExoVista will assign planets to bins in radius and semi-
major axis based on planet types instead of randomly to the whole grid. These bins are 
read in from the file planetbins.dat. The occurrence rate will be adjusted from the 
Monte Carlo draw so that each planet type bin includes exactly the expected number of 
planets from the occurrence rate table (unless stability constraints prevent this). Default 
is False. 
 
subdivide: int, optional; multiplies the grid size of the occurrence rate distribution 
used to assign planets. (The tables have a native resolution of 100x100 in M-a space.) 
Minimum value is 1; maximum value is 10. Default is 1. 

 
Returns: 
 plorb: 3-D array (floats); planet parameters (nstars x 30 x 8) 
 
 albedos: 2-D array (floats); albedo file names assigned to planets (nstars x 30) 



generate_planets.load_occurrence_rates(subdivide=1, bound='', 
mass=True, usebins=False) 
 
Wrapper that calls the correct version of load_occurrence_rates to read the desired table 
of occurrence rates. (Currently, only the M-a-space table is implemented.) The bound and 
mass parameters are used to generate the name of the correct file. (Note: this wrapper is not 
needed in the current version of the code, but it is included to allow the possibility of future 
expansion with different types of occurrence rate files such as those in R-P-space.) 
 
Parameters: 

subdivide: see below 
 
bound: string, optional; set to ‘upper’ or ‘lower’ to use the optimistic or pessimistic 
bounds of the planet occurrence rates, respectively. Default is ‘’ (empty string), which 
uses the nominal occurrence rates. 
 
mass: bool, optional; if True, the occurrence rates are read in M-a-space. If False, the 
occurrence rates are read in R-P-space and then converted to M-a-space for the purpose 
of generating planet parameters. Default is True. 
 
usebins: bool, optional; if True, ExoVista will assign planets to bins in radius and semi-
major axis based on planet types instead of randomly to the whole grid. Default is 
False. 

 
Returns: 

Output of desired load_occurrence_rates function. 
 
 

generate_planets.load_occurrence_ratesMA(filename, subdivide=1, 
usebins=False) 
 
Reads in a table of planet occurrence rates in radius-period space, which is used to distribute 
planets to the stars. 
 
Parameters: 

filename: string; the name of the occurrence rate file to be read. Generated 
automatically by generate_planets.load_occurrence_rates(). 
 
subdivide: int, optional; multiplies the grid size of the occurrence rate distribution 
used to assign planets. Minimum value is 1; maximum value is 10. Default is 1. 
 
usebins: bool, optional; if True, ExoVista will assign planets to bins in radius and semi-
major axis based on planet types instead of randomly to the whole grid. Default is 
False. 



Returns: 
newoccrate: 2-D array (floats); an array of planet occurrence rates in M-a-space or R-
a-space of the specified grid size. 
 
medge and aedge: 2-D arrays (floats); arrays of R- or M-values and a-values of the 
occurrence rate table, respectively. These two arrays combine to give the ordered pairs 
of the coordinates in the occurrence rate map. 
 
mmid and amid: 2-D arrays (floats); arrays of R- or M-values and a-values of the 
occurrence rate table, respectively. These two arrays combine to give the ordered pairs 
of the coordinates in the occurrence rate map. 

 
 
generate_planets.add_planets(stars, plorb, expected, orM_array, 
ora_array, hillsphere_flag, randrad, rng): 
 
Adds planets to the planets array based on the occurrence rates. This function fills out the array 
up to the expected number of planets randomly, without looking at the other planets in the 
system. All added planets are flagged to check their stability later. 
 
Parameters: 
 stars: DataFrame; a table of stellar parameters to which to assign the planets. 
  

plorb: 3-D array (floats); the table of current planets. New planets will be added to this 
table starting from the first vacant (all zeros) entry for each star. 
 
expected: 2-D array (ints); the 2-D histogram of total planets expected for each 
gridpoint in R-P space, rounded to the nearest integer. 
 
orM_array and ora_array: arrays (floats); bin edge arrays of M-values and a-values 
of the occurrence rate table, respectively. These two arrays combine to give the ordered 
pairs of the coordinates in the occurrence rate map. Planets will be assigned to random 
coordinates between the bin edges of the appropriate “pixel” of the grid. 
 
hillsphere_flag: 2-D array (bools); a boolean table indicating where new planets 
have been added. The function will set the entries corresponding to all added planets to 
True and all existing planets to False. 
 
randrad: bool; if True, random variation is added to the computed planet radii, carried 
over from the main Settings object; default is False. Note: not compatible with 
usebins. 
 



rng: numpy.random.default_rng object; random number generator created by 
generate_planets(), which carries the same random seed over to 
add_planets(). 

 
Returns: 
 plorb: 3-D array (floats); the updated table of planet parameters. 
 
 hillsphere_flag: 2-D array (bools); the updated Hill sphere (new planet) flag table. 
 
 
generate_planets.remove_unstable_planets(stars, plorb, 
hillsphere_flag) 
 
Checks the stability of all newly added planets in the plorb table and removes those that show 
orbital instability due to overlap of mutual hill spheres. The function always removes the less 
massive planet of an unstable pair. When a planet is removed, it also re-checks the next planet 
inward, in case it is mutually unstable with a larger outer planet. 
 
Parameters: 
 stars: DataFrame; a table of stellar parameters to which to assign the planets. 
  

plorb: 3-D array (floats); the table of current planets. Unstable planets will be removed 
from this table and the table re-sorted for each star to remove gaps in the list. 
 
hillsphere_flag: 2-D array (bools); a boolean table indicating where new planets 
have been added, which must therefore be checked for stability. 

 
Returns: 
 plorb: 3-D array (floats); the updated table of planet parameters. 
 
 
generate_planets.assign_albedo_file(stars, plorb, rng) 
 
Assigns an albedo file to each planet in the population generated for the input list of stars. 
Albedo files are assigned randomly from the subset that apply to a given planet’s radius and 
semi-major axis. 
 
Parameters: 
 stars: DataFrame; a table of stellar parameters to which planets have been assigned. 
  

plorb: 3-D array (floats); the table of planet parameters to be assigned albedo files. 
 



rng: numpy.random.default_rng object; random number generator created by 
generate_planets(), which carries the same random seed over to 
assign_albedo_file(). 
 

Returns: 
 plalbedo: 2-D array (strings); table of albedo files assigned to each planet 
 
 
A.3 Module generate_disks 
 
 
generate_disks.generate_disks(stars, planets, settings, 
nexozodis=None, rand_components=False) 
 
Creates a randomized array of debris disks associated with the input star list. Each star is given 
a list of 3 disk components, corresponding roughly to the warm dust, cold dust, and high-
inclination cold dust components of our Solar system. The warm dust component is always 
assigned, while unassigned slots are set to zeros. The disks are generated randomly, but are 
constrained by the dynamics imposed by the planets. All disk components in the same system 
are assigned the same composition. 
 
Parameters: 
 stars: DataFrame; a table of stellar parameters to which planets have been assigned. 
  

planets: 3-D array (floats); the table of planet parameters to be assigned albedo files. 
  
 settings: Settings object; contains all of the settable code parameters. 

 
nexozodis: 1-D array (floats); the pre-assigned list of dust densities given by the stellar 
targets file, if present. If None, nexozodis is assigned randomly. Default is None. 
 
rand_components: bool; if True, the number of disk components will be randomly 
selected for each star within the allowed range. Default is False. 

 
Returns: 
 disks: 3-D array (floats); table of disk parameters (nstars x 3 x 15). 
  
 compositions: array (strings); list of compositions assigned to disks for each star. 
 
 
 
 
 



A.4 Module generate_scene 
 
Generates the scene of a planetary system with stellar spectrum, planetary contrast spectra, 
per-pixel disk contrast spectra, and transit and eclipse times. Both stellar and planetary spectra 
are computed per-timestep, although the stellar spectrum does not change. This scene is the 
“real” or “exact” image with no PSF or throughput function applied, although it does require a 
pixel scale to be specified. It may be used to model detection, characterization, and other 
observation methods with a simulated pipeline. 
 
 
generate_scene.load_lqsca(lqq_dir, composition, rdust, 
rdust_boundaries, lam) 
 
Loads the scattering cross-section table for the specified disk composition. Absorption and 
scattering cross sections as a function of wavelength are listed for each composition and 
particle size in the lqq_dir directory. The load_lqsca() function reads in the files for each 
particle size for the given composition and builds a 2-D table of scattering cross sections. 
 
Parameters: 
 lqq_dir: string; the name of the directory where the cross-section files are found. 
  
 composition: string; the name of the disk composition. 
  

rdust: array (floats); the particle sizes used to build the cross-section table. By default, 
this is based on an array defined in defaults.py. 

  
rdust_boundaries: 2-D array (floats): the upper and lower bounds of each particle 
size bin (used to construct the filenames of the cross-section files). 

  
 lam: array (floats); the array of wavelengths used to build the cross-section table. 
 
Returns: 

Qsca_array: 2-D array (floats); table of particle cross scattering sections (nsizes x 
nlambda). 

 
 
generate_scene.load_lqabs(lqq_dir, composition, rdust, 
rdust_boundaries, lam) 
 
Loads the absorption cross-section table for the specified disk composition. Absorption and 
scattering cross sections as a function of wavelength are listed for each composition and 
particle size in the lqq_dir directory. The load_lqabs() function reads in the files for each 
particle size for the given composition and builds a 2-D table of scattering cross sections. 
 



 
Parameters: 
 lqq_dir: string; the name of the directory where the cross-section files are found. 
  
 composition: string; the name of the disk composition. 
  

rdust: array (floats); the particle sizes used to build the cross-section table. By default, 
this is based on an array defined in defaults.py. 

  
rdust_boundaries: 2-D array (floats): the upper and lower bounds of each particle 
size bin (used to construct the filenames of the cross-section files). 

  
 lam: array (floats); the array of wavelengths used to build the cross-section table. 
 
Returns: 

Qabs_array: 2-D array (floats); table of particle absorption cross sections (nsizes x 
nlambda). 

 
 
generate_scene.lambertian(beta) 
 
Simple function to compute the Lambertian reflectivity for a given angle. 
 
Parameters: 
 beta: array (floats); a list of angles to compute. 
 
Returns: 
 phi: array (floats); the corresponding reflectivity for each angle. 
 
 
generate_scene(stars, planets, disks, albedos, compositions, settings) 
 
The main function for generate_scene and the direct output function for ExoVista as a 
whole. This function takes all of the parameters of planetary systems generated by or read into 
the code, sets up the relevant arrays and constants, computes the corresponding scene for 
each star over time, and outputs the results as a FITS file. (This is also the function that loops 
over the individual stars.) 
 
Parameters: 
 stars: DataFrame; the data structure of stellar properties. 
  
 planets: 3-D array (floats); the array of planet properties for each system. 
  
 disks: 3-D array (floats); the array of disk properties for each system. 



  
albedos: 2-D array (strings): the albedo file assigned to each planet. 

  
compositions: array (strings); the disk composition assigned to each system. 

  
 settings: Settings object; contains all of the settable code parameters. 
 
Returns: None (FITS files are written to disk.) 
 
 
distribute_diskpoints(s, disk, rdust, drdust, Qsca, xcen=0, ycen=0, 
xwidth=settings.npix, ywidth=settings.npix) 
 
Computes the disk contrast data cube for a given planetary system. This is an array of per-pixel 
contrast of the dust disk with the star over a low-resolution spectrum. A low spectral resolution 
is used to save memory because dust scattering spectra tend not to have narrow features. 
Note: this function utilizes the Cython class PyImage. 
 
Parameters: 
 s: DataFrame entry; the data structure of stellar properties for a single star. 
   
 disk: 2-D array (floats); the array of disk properties for the planetary system. 
  
 rdust: array (floats); the particle sizes used to build the cross-section table. 
  
 drdust: array (floats); the widths of the rdust bins. 
  

Qsca: 2-D array (strings): the dust cross section table, normally that returned by 
load_lqsca(). 

  
xcen and ycen: floats; disk-relative coordinates of the center of the disk image to be 
calculated, in AU. Note that these coordinates are relative to the star, not to the corner 
of the frame like the pixel coordinates. They are rotated so that xcen lies along the 
disk’s axis of inclination, and ycen lies perpendicular to that axis. Defaults are 0 and 0. 

  
xwidth and ywidth: floats; size of disk image to be calculated in pixels. This allows a 
subset of the full frame to be calculated to reduce execution time. (For some 
applications, such as calibration, only a “postage stamp’ of the frame is required.) Note 
that these coordinates are aligned with the image frame and not rotated. Defaults are 
both settings.npix. 

 
Returns: 

masterimg: 3-D array (floats); the disk contrast spectrum data cube (npix x npix x 
nlambda_disk). 



rgen(numx, numy=0) 
 
Generates an array of radial coordinates associated with an x-y pixel coordinate grid, with the 
star at (0,0). This is converted to an array of angular separations from the star used by 
distribute_diskpoints() to compute the disk flux at each pixel. 
 
Parameters: 

numx: int; the size of the pixel array in the x-dimension. 
 

numy: int; the size of the pixel array in the x-dimension. Default value is 0, which is reset 
to numx. 
 

Returns: 
r: 2-D array (floats); the grid of radial coordinates of each pixel. 

 
x and y: arrays (floats); the lists of x- and y-coordinates used to build the grid. 

 
 
get_stellar_flux(s, lam, path='./', spectrum=None) 
 
Note: this function is slated for rewriting with an improved model. Computes the stellar 
spectrum for a given star from the Kurucz & Castelli ATLAS9 stellar atmosphere models. Note 
that unlike the other spectra, which are contrast values, the stellar spectrum is computed in 
units of janskys. 
 
Parameters: 

s: DataFrame entry; the stellar parameters to compute the spectrum. 
 

lam: array (float); the wavelength points to compute the spectrum. 
 
path: string; the location of the Kurucz & Castelli model table. Default value is the 
current directory. 
 
spectrum: string; if defined, sets a stellar spectrum file to be used in place of the built-
in models. Default is None. 

 
Returns: 

interplambda: array (floats); the output wavelength array on which the spectrum is 
computed. This is the union of the built-in wavelength array of the table, the requested 
lam array for the ExoVista output, and the transition_lambda transition wavelength 
values. 

 
fstar: array (floats); the stellar flux on the interplambda array. 

 



getkurucz(teff, logg, metallicity=0.0) 
 
Note: this function is slated for rewriting with an improved model, especially for 
temperatures <3500 K, and to add more metallicity values. Interpolates the Kurucz & Castelli 
spectrum table to the star’s effective temperature, surface gravity, and metallicity. 
 
Parameters: 

teff: float; the effective temperature of the star. 
 

logg: float; the log-surface gravity of the star. 
 
metallicity: float; the metallicity of the star in dex. Default value is 0.0. Note: 
currently returns an error if not set to zero. 
 

Returns: 
lam: array (floats); the wavelength array of the Kurucz & Castelli table. 

 
Bnu: array (floats); the stellar flux on the lam array in units of (erg s-1 cm-2 Hz-1 sr-1). 

 
 
read_albedo_file(filename) 
 
Reads in the albedo file for a given planet. There are three types of albedo file: isotropic, phase-
resolved, and latitude-longitude-resolved. These return 1-D, 2-D, and 3-D arrays of albedo 
values, respectively. This function handles all three formats, and there are corresponding 
sections of thread_the_scene() that convert each one to a planetary spectrum. 
 
Parameters: 

filename: string; the name of the albedo file. 
 

Returns: 
lam: array (floats); the wavelength array of the albedo file. 

 
phi: array (floats); the array of phase/longitude values of the albedo file. If the file is 
not phase-resolved, this is an array of length 1. 

  
lat: array (floats); the array of latitude values of the albedo file. If the file is not 
latitude-resolved, this is an array of length 1. 

  
gI: 1-D, 2-D, or 3-D array (floats); the array albedo values from the file. 

 
 
 



A.5 Module read_solarsystem 
 
 
read_solarsystem(settings, system_file='example_system.dat') 
 
Reads in a file containing the parameters for a single planetary system and converts it to the 
five data structures used by generate_scene(). Note: each output array has one more 
dimension than the shape of its data structure would suggest. In each case, the outermost 
dimension has length one and is included for compatibility reasons, as generate_scene() 
expects a list of systems. 
 
Parameters:  
 settings: Settings object; contains all of the settable code parameters. 
  

system_file: string; the file from which to read in the planetary system parameters. 
Default value is “example_system.dat”, which contains parameters for our Solar 
system. 

 
Returns:  
 stars: DataFrame; the data structure of stellar properties. 
  

planet: 3-D array (floats); the array of planet properties. 
  

disks: 3-D array (floats); the array of disk properties. 
  

albedos: 2-D array (strings): the albedo file assigned to each planet. 
  
 compositions: array (strings); the disk composition. 
 
 settings: Settings object; contains the settable code parameters (which may have 

been changed by the input file). 
 
 
 
 
 
 
 
 
 
 
 
 



A.6 Module nbody 
 
 
nbody(cartin, GM, R, istar, curr_time, desired_time) 
 
Takes one timestep of the N-body integrator. Specifically, it sets up the state matrix and calls 
the integration functions repeatedly to reach the desired precision. It also calls 
detect_transits() to find transit and eclipse times. 
Note: this function utilizes the Cython class PyIntegrator. 
 
 
Parameters: 

cartin: list of arrays (floats); the (barycentric) cartesian position and velocity 
coordinates of the star and planets at the stars of the timestep. 
 
GM: array (floats); the GM mass parameter for the star and planets. 
 
R: array (floats); the radii for the star and planets. 
 
istar: float; the inclination of the system midplane. 
 
curr_time: float; the current time at the start of the timestep. 
 
desired_time: float; the desired time at the end of the timestep. 

 
Returns: 

cartout: list of arrays (floats); the cartesian position and velocity coordinates of the 
star and planets at the end of the timestep. 
 
tlist: list (floats); a list of times of transit and eclipse events within the timestep, in 
years. 
 
transmaster: list of lists (ints); a list containing a list of status for each planet over the 
times in tlist: +1 for transit, -1 for secondary eclipse, 0 for no event. 

 
 
detect_transits(R, istar, state) 
 
Determines whether any planets are in transit or secondary eclipse at a given integrator step by 
measuring the coordinate difference between the planets and stars and comparing them with 
the sum of radii. 
 
Parameters: 
 R: array (floats); the radii for the star and planets. 



 
istar: float; the inclination of the system midplane. 
 
state: 2-D array (floats); compilation of star and planet coordinate lists at that 
integrator step. 

 
Returns: 

mintrans: float; a parameter used for integration step size control based on the 
minimum of the distance of a planet from the stellar disk divided by the planet’s angular 
speed. 
 
translist: array (floats); an array of the current status of each planet: +1 for transit, -
1 for secondary eclipse, 0 for no event. 

 
 
A.7 Module coordinates 
 
 
cartesian(GM, kepcoords) 
 
Converts the orbital elements of a list of planetary orbits to cartesian position and velocity 
vectors relative to the star. Note that the coordinate transforms are heliocentric (and thus don’t 
include the star in the vector) rather than barycentric like the N-body integrator. This is 
necessary for generating the image, which always centers the star. 
 
Parameters: 

GM: array (floats); the GM mass parameter for the planets. 
 
kepcoords: list of arrays (floats); the Keplerian orbital elements for the planets. 
 

Returns: 
[x, y, z, vx, vy, vz]: list of arrays (floats); the (heliocentric) position and 
velocity vectors for the planets. 
 
 

keplerian(GM, cartcoords) 
 
Converts cartesian position and velocity vectors relative to the star to instantaneous orbital 
elements for the planets. 
 
Parameters: 

GM: array (floats); the GM mass parameter for the planets. 
 



cartcoords: list of arrays (floats); the (heliocentric) position and velocity vectors for 
the planets. 
 

Returns: 
[a, e, I, longnode, argperi, meananom]: list of arrays (floats); the Keplerian 
orbital elements for the planets. 

 
 
A.8 Module wrapImage / Class PyImage / C++ Class Image 
 
Note: this is a Cython class. PyImage is the Python class, which is a wrapper for the C++ Image 
class. They are implemented in Python with wrapImage.pyx and wrapImage.pxd. They are 
implemented in C++ with Image.cpp and Image.h. The API below describes the usage in 
normal Python code. 
 
wrapImage.PyImage() 
 
Constructor for the PyImage class. It holds the logical structures needed to call the C++ 
routines. 
 
Parameters: None 
 
Returns: PyImage object. 
 
 
PyImage.SetupImage(rs, Te, rdb, ts, di, rd, drd, Qs) 
 
Calls the constructor for the C++ Image object. This object holds the star and disk parameters 
needed to compute the disk image. 
 
Parameters: 

rs: float; the radius of the star. 
 

Te: float; the effective temperature of the star. 
 

rdb: float; the dust blowout grain size in microns. Grains smaller than this are assumed 
to be removed from the system by radiation pressure. Default value is 0.5, set by 
defaults.py. 

 
ts: float; the sublimation temperature of the dust in kelvins. Grains interior to the 
radius where this temperature occurs than this are assumed to be removed from the 
system by sublimation. Default value is 1500, set by defaults.py. 
 
di: 2-D array (floats); the disk parameters for the system. 



 
rd: array (floats); the array of dust sizes in the cross-section table. 
 
drd: array (float); the width of the grain size bins in the cross-section table. 
 
Qs: 2-D array (floats); the optical cross-section table for the disk dust composition. 
 

Returns: None 
 
 
PyImage.disk_imager(x, y, z, r, dv, cosscattang) 
 
Computes the disk brightness at a given pixel of the output image by a radiative transfer 
algorithm. First, the disk is rotated to be aligned with a cartesian coordinate grid. Then, the line 
of sight to the observer is subdivided in all three dimensions to account for local density 
variations in the disk. The radiative transfer calculation is performed over each 2-D subpixel, 
and reported as a spectrum. The spatial resolution of the radiative transfer calculation is 
determined by the size of the input arrays, and this resolution is iterated upon by 
generate_scene.distribute_diskpoints() to achieve the desired precision, them 
summed over the pixel. Note that this assumes the exozodi disk is optically thin. 
 
Parameters: 

x, y, and z: 3-D arrays (floats); the disk-relative x-, y-, and z- coordinates of each sub-
voxel in the pixel addressed by the radiative transfer calculation. 

 
r: 3-D array (floats); the distance from the star in AU of each sub-voxel. 

 
dv: 3-D array (floats); the volume of each sub-voxel in AU3. 

 
cosscatang: 3-D array (floats); the cosine of the scattering angle from the star to the 
observer for each sub-voxel. 
 

Returns: 
flux: 3-D array (floats); the contrast spectrum of the disk with the star for each 2-D 
subpixel in the pixel (nx x ny x nlambda). 
 
 
 
 
 
 
 
 



A.9 Module wrapIntegrator / Class PyIntegrator / C++ Class Integrator 
 
Note: this is a Cython class. PyIntegrator is the Python class, which is a wrapper for the C++ 
Integrator class. They are implemented in Python with wrapIntegrator.pyx and 
wrapIntegrator.pxd. They are implemented in C++ with Integrator.cpp and 
Integrator.h. The API below describes the usage in normal Python code. 
 
 
wrapIntegrator.PyIntegrator() 
 
Constructor for the PyImage class. It holds the logical structures needed to call the C++ 
routines. 
 
Parameters: None 
 
Returns: PyImage object. 
 
PyIntegrator.SetupIntegrator(GMin, stin, tin, dtin) 
 
Calls the constructor for the C++ Integrator object. This object holds the mass, coordinate, and 
time states that need to be tracked by the integrator. 
 
Parameters: 

GMin: array (floats); the GM mass parameter for the star and planets. 
 
stin: 2-D array (floats); compilation of the cartin coordinate list into an array used by 
the integrator. 
 
tin: float; the current time. 
 
dtin: float; the integrator timestep (smaller than the output timestep) 
 
 

PyIntegrator.integrate() 
 
The core integration function for the N-body integrator, based on the Bulirsch-Stoer integrator 
written by Henon & Wisdom. 
 
Parameters: None 
 
Returns: None (The integrator state is returned by utility functions.) 

 
 
 



PyIntegrator.getState() 
 
Utility function returning the planet and star coordinates in a way that can be read by Python. 
 
Parameters: None 
 
Returns: 

state: 2-D array (floats); compilation of the current star and planet coordinates. 
PyIntegrator.getTime() 
 
Utility function returning the time in a way that can be read by Python. 
 
Parameters: None 
 
Returns: 

time: float; the current time in the integrator, in years. 
 
 

PyIntegrator.getDeltaT() 
 
Utility function returning the timestep size in a way that can be read by Python. 
 
Parameters: None 
 
Returns: 

official_delta_T: float; the current timestep size of the integrator, in years. 
 
 

PyIntegrator.setDeltaT() 
 
Utility function allowing the timestep size to be set from Python. 
 
Parameters: 

newdeltaT: float; the new timestep size of the integrator, in years. 
 
Returns: None 
 
 
 
 
 
 
 
 

 



equations_of_motion(GM, state) 
 
Computers the “equations” of motion of the star and planets, i.e. the 3-D velocities and 
accelerations because on Newton’s law of gravity. 
 
Parameters: 

local_state: array (floats); the position and velocity vectors for the star and planets. 
 

Returns: 
local_deriv: 2-D array (floats); the derivative of the state vector, i.e. the velocity and 
acceleration vectors for the star and planets computed by the function. 
 

 
A.10 Dataclass Settings.py 
 
A Dataclass is a Python class that contains only a structure of data. The Settings Dataclass 
contains all of the code parameters that are intended to be user-settable, as well as their 
default values. A Settings Dataclass with the desired values must be passed to the functions 
that use any of these parameters. The included parameters are listed below. 
 
Imaging and spectroscopy parameters 
pixscale: the pixel size in arcseconds. Default value is 0.002. 
iwa: the inner working angle of the coronagraph, in arcseconds. Default value is 0.015. 
iwa_tol: the fractional tolerance in precision required for the disk image interior to the inner 
working angle. Default value is 0.1 (compared with 0.05 or less outside the IWA). 
npix: size of (square) image in pixels. Default value is 250. 
specres: resolution of the star and planet output spectra. Default is 300. 
specresdisk: spectral resolution of the disk contrast cube. Default is 10. 
lambdamin and lambdamax: minimum and maximum wavelength of spectra in microns, 
respectively. Defaults are 0.3 and 1.0, respectively. 
hires: if True, resets specresdisk to equal specres. Default is False. 
 
Planet population parameters 
seed: the (integer) seed of the random number generator. Default is None. 
emin and emax: minimum and maximum eccentricity, respectively. Note: eccentricity must be 
<1. Defaults are both 0.0. 
imin and imax: minimum and maximum orbital inclination relative to the system midplane, 
respectively, in degrees. Zero inclination may produce unstable behavior in the orbit 
orientation. Defaults are 0.0 and 5.0, respectively. 
sysimin and sysimax: minimum and maximum system inclination relative to the plane of the 
sky, respectively, in degrees. (I.e. zero is face-on, 90 is edge-on.) Defaults are 0.0 and 180.0. 
sysPAmin and sysPAmax: minimum and maximum position angle of the system midplane 
(rotation relative to the sensor), respectively, in degrees. Defaults are 0.0 and 360.0. 
eecprob: the probability that a planet in the EEC bounding box will be an EEC. Default is 1.0. 



randphase: if True, adds random variation to the Lambertian phase functions. Default is 
False. 
randrad: if True, adds random variation to the mass-radius relation. Default is False. 
 
Disk model parameters 
ncomponents: number of disk components per star. Default value is 2, but is reset base on the 
size of the disk array (including zeros). 
diskoff: if True, the disk contrast cube will not be calculated by generate_scene() and 
will be set to zero instead. This is useful to speed up testing. Default value is False. 
minsize and maxsize: the minimum and maximum sizes of dust grains considered, 
respectively, in microns. Default values are 0.1 and 1000.0, respectively. 
rdust_blowout: the minimum dust grain size in microns based on blowout by radiation 
pressure. Default value is 0.5. 
tsublimate: the sublimation temperature of dust grains in kelvins. Default value is 1500. 
 
Disk profile parameters 
density_ratio: the maximum ratio between the densities of disk components. Default value 
is 5. 
stability_factor: the minimum separation between a planet and a dust belt, in Hill radii. 
Default value is 3. 
rinner_mass_threshold: the minimum mass of planet needed to truncate the disk to its 
interior, in Earth masses. Default value is 100. 
dror_min and dror_max: the minimum and maximum fractional widths of dust belts, 
respectively. Default values are 0.05 and 0.3. 
hor_min and hor_max: the minimum and maximum fractional scale height of the disk, 
respectively. Default values are 0.03 and 0.2. 
r_min and r_max: lists of the minimum and maximum circumstellar distances, respectively of 
the three disk components, in AU. Defaults values are [0.5,5.,50.] and [5.,50.,500.]. 
 
Scene parameters 
timemax: the end time used by the N-body integrator in years. Default value is 1.e-10 (single 
image only). Typical values for a survey are 5-10. 
dt: timestep for the nbody integrator in (Julian) years. Default value is 10/365.25 (10 days). 
output_dir: output directory. Default value is “output”. 
overwrite: if True, existing FITS files with the same ID number as a target star will be 
automatically overwritten. Default is False. 
 
One parameter is computed by the __post_init__() function that runs automatically upon 
initialization: 
 
pixscale_mas: the pixel size in milliarcseconds, based on pixscale. 
 
specrdisk is also reset by hires in this function, if applicable. 
 



A.11 Module constants.py 
 
This module does not contain any functions, but does contain a list of constant values that are 
needed by various functions in the code. These constants are listed below. 
 
Physical constants 
grav_const: the gravitational constant in units of AU3 yr-2 Msun-1. 
c: the speed of light in AU yr-1. 
planck: Planck’s constant in cgs units. 
 
Data structure parameters 
maxnplanets: number of planets per star. Default value is 30, but is reset based on the size of 
the planets array (including zeros). 
mincomponents: minimum number of disk components. Default value is 1. 
maxcomponents: maximum number of disk components. Default value is 3. 
 
File paths 
exovistapath: path to the main ExoVista directory, where the relevant data values should 
be. Default value is the current directory. 
lqq_dir: directory where the dust cross-section tables are stored. Default value is “lqq_files/”. 
 
Dust model parameters. These are used to define the dust cross-section filenames procedurally 
from a minimum and maximum grain size, and a resolution in log-grain size. However, this 
method consistently failed to produce the correct filenames due to rounding errors, and the 
commented-out variables are not used. 
 
The arrays master_rdust and master_rdust_boundaries are hard-coded with the 
specific decimals used in the cross-section filenames. These should not be changed unless the 
cross-section tables do, or else the code will crash. 
master_nsizes: the length of the master_rdust_boundaries array. 
master_drdust: widths of the grain size bins, generated automatically from the 
master_rdust_boundaries array. 
 
Table headings. These describe the valid column names for star, planet, and disk properties. In 
many cases, they are used for indexing, and they are used outside of generate_scene where 
the **kwargs reassignment does not apply, so they should not be changed, or else the code 
will crash or exhibit unstable behavior. 
 
starbase: dictionary of included parameter names and default values for stellar properties 
(excluding nzodis, since nzodis may need to be randomized). 
alias: dictionary of valid column header names for the stellar parameters, this allows 
common substitutions to be used, like “Mstar” vs. “Mass” or “SpT” vs. “Type.” 
intlist: stellar properties that have int rather than float data type. 
strlist: stellar properties that have string rather than float data type. 



keplist: list of orbital elements of stars and planets. 
pllabel: list of planet properties. 
dlabel: list of disk properties. 
 
FITS file comments. These will not need to change unless you substantially change the format 
of the output files. 
scomments: comments in the heading of the stellar data extension (Extension 4). 
pcomments: comments in the headings of the planetary data extensions (Extension 5+). 
dcomments: comments in the headings of the disk data extension (Extension 2). 
 
 
A.12 Class Scene.py 
 
Object that reads in a FITS file produced by ExoVista and parses the data into a format that can 
be easily output by utility functions. 
Note: all functions excluded the “extra” reference Earth twin, if present. 
 
Constructor: 
 
Scene.Scene(fname) 
 
Parameters: 

fname: string; FITS file to be read. 
 

 
Scene.getStarLambda() 
 
Parameters: None 
 
Returns: 

lambdas: array (floats); the wavelength points at which the star and planet spectra are 
calculated, in microns. 
 

 
Scene.getDiskLambda() 
 
Parameters: None 
 
Returns: 

lambdas_disk: array (floats); the wavelength points at which the disk spectral cube is 
calculated, in microns. 
 
 

 



Scene.getAngDiam() 
 
Parameters: None 
 
Returns: 

angdiam: floats; the angular diameter of the star, in milli-arcseconds. 
 
 
Scene.getPixScale() 
 
Parameters: None 
 
Returns: 

pixscale: floats; the pixel scale of the image, in milli-arcseconds. 
 

 
Scene.getXYstar(time=0) 
 
This method returns the star’s sky-plane coordinates in the image. However, because the image 
is centered on the star, they are constant in time.  
 
Parameters: 

time: float OR array; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 

xystar: 2-D array (floats); array containing 2 subarrays of the x and y sky-coordinates 
of the star over time, in pixels. 
 

 
Scene.getXYbary(time=0) 
 
Parameters: 

time: float OR array; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 

xystar: 2-D array (floats); array containing 2 subarrays of the x and y barycentric 
coordinates of the star over time, in AU. 
 

 
 
 
 



Scene.getRV(time=0) 
 
Parameters: 

time: float OR array; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 

rv: array (floats); array containing the star’s radial velocity over time, in cm/s. 
 
 
Scene.getStarSpec(time=0) 
 
Parameters: 

time: float ONLY; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 

fstar: array (floats); the spectrum of the star, in Janskys. 
 

 
Scene.getXYplanets(time=0) 
 
Parameters: 

time: float ONLY; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 
 xyplanet: 2-D array (floats); the coordinates of the planets, in pixels. 

 
 
Scene.getPlanetSpec(time=0) 
 
Parameters: 

time: float ONLY; time at which the system parameters should be interpolated and 
output, in years. Default value is 0. 

 
Returns: 
 fplanet: 2-D array (floats); the spectra of the planets, in Janskys. 

 
 
 
 
 
 



Scene.getOrbits() 
 
Parameters: None 

 
Returns: 
 orbits: 2-D array (floats); the orbital elements of the planets: a, e, i, longnode, 

argperi, and meananom, in AU or decimal degrees, as applicable. 
 
 
Scene.countPlanets() 
 
Parameters: None 
 
Returns: 
 nplanets: int; the number of planets in the system. 
 
 
Scene.countPlanetTypes() 
 
Parameters: None 
 
Returns: 
 nplanets: 2-D array (ints); the number of planets in each radius-instellation bin as 

defined by planetbins.dat. 
 
 
Scene.countEECs() 
 
Parameters: None 
 
Returns: 
 eecs: int; the number of exo-Earth candidates in the system, excluding the “extra” 

reference Earth twin, if present. 
 

 
Scene.getTransits() 
 
Parameters: None 
 
Returns: 
 transits: list of lists (floats, ints, ints, ints); a list of transit and eclipse events over the 

integration time, including the start/end time if an event is in progress. States are +1 for 
in transit, -1 for in eclipse, and 0 for not in transit or eclipse. Returns all zeros if no 
events occur. 



Sublist 1: time in days. 
Sublist 2: ID of planet. 
Sublist 3: State before event. 
Sublist 4: State after event. 
 

 
Scene.getTransitingPlanets() 
 
Parameters: None 
 
Returns: 
 None if no planets transit (within the integration time). 
 
 plist: array (ints); the ID numbers for all transiting planets, excluding the “extra” 

reference Earth twin, if present. 
 
 
Scene.getTransitTimes(planet) 
 
Parameters: 
 planet: int; the ID number of the planet to retrieve transits and eclipses. 
 
Returns: 
 None, None if the planet does not transit (within the integration time). 
 
 transits: list of lists (floats, floats); the timestamps of all transits of the planet within 

the integration time. Each sublist contains the start and end time of the transit, or the 
start or end time of the integration if a transit is in progress. 

 
 eclipses: list of lists (floats, floats); the timestamps of all eclipses of the planet within 

the integration time. Each sublist contains the start and end time of the eclipse, or the 
start or end time of the integration if an eclipse is in progress. 

 
 
Scene.getDiskImage() 
 
Parameters: None 
 
Returns: 

diskimage: 3-D array (floats); the disk constrast data cube of brightness relative to the 
star, except interpolated to the same wavelengths as the stellar spectrum. 

  
 
 



A.13 Module add_background.py 
 
add_background.add_background(inputfile, time=0) 
 
Reads in a FITS file produced by ExoVista and generates a data cube of extragalactic background 
sources based on the Haystacks model of Roberg et al. (2017). 
 
Note: this module requires Extragalactic background cubes 0 through 5 from 
https://asd.gsfc.nasa.gov/projects/haystacks/downloads.html 
 
Parameters: 

inputfile: string; FITS file to be read. 
 

time: float; time at which the system parameters should be interpolated and output, in 
years. Default value is 0. 

 
Returns: 

Background_final: 3-D array (floats); data cube of extragalactic background fluxes in 
janskys per pixel, with the same format as the disk data cube. 


