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e General Availability of EMCCDs:

« The Care and Feeding of EMCCDs: Gain Characteristics, Drive
Requirements, Cooling, Ageing

* Photon Counting Strategies with EMCCDs
e Clock Induced Charge: What Is It and how to Minimise It.

e (Conclusions
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€ gain mechanism increases the variance 1 the output
signal so that the signal-to-noise ratio goes as V(2N) rather

than V(N).

« Equivalent to halving the detective quantum efficiency.

« Photon counting can substantially restore this effective loss in
quantum efficiency.

* Clock induced charge (CIC) affects all CCDs, but you will
only really notice it with high gain EMCCDs.
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— black hole binary systems

« — white dwarf binary systems

e — gamma ray bursts and supernovae

« —normal stars - stellar oscillations

« —solar system objects through transits and occultations
Planets and satellites
Kuiper belt objects
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* With genuine photon counting detectors, very faint
periodic signals may be accumulated using large numbers
of repeated cycles.

» Techniques for overcoming atmospheric fluctuations
require fast, very low noise, high sensitivity detectors.

« Examples are wavefront sensors such as Shack-Hartmann
and curvature sensors. They need to operate with frame
rates 1n the 50-2000 Hz range.

EE UNIVERSITY OF
WGP CAMBRIDGE Detector Virtual Workshop, Cambridge: 5 Dec 2011




« The image on the left is from the Hubble Space Telescope Advanced Camera for
Surveys (ACS) while the image on the right 1s the lucky image taken on the NOT in
July 2009 through significant amounts of dust.

» The central slightly fuzzy object is the core of the Zwicky galaxy, ZW 2237+030
that gives four gravitationally lensed images of a distant quasar at redshift of 1.7
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Applications of EMCCDs In Astronomy.

* (@Globular cluster M13 on
the Palomar 5m.

* Natural seeing ~650 mas.

* Imaged via the PALMAO
system and our EMCCD
Lucky Camera.

* Achieved 17% Strehl ratio
in I-band, giving ~40 mas
resolution.

e This is the highest
resolution image ever
taken in the visible.

 Field shown here is about
7X] arcsec.
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Imaging
on
Palomar
5m.

* The comparison of our system with
Hubble Advanced Camera (ACS) 1s
quite dramatic.

* Lucky/AO image resolution ~ 40
milliarcseconds or ~3 times Hubble.
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turbulence.

» The top 1image 1s the sequence
average (what you would get with
a long exposure image).

*  Others show selections of
10%, 1% and 1% post-processing.

e The resolution improvement is
dramatic.

*We typically are able to reduce
the effective distance of a target by
a factor of 8-12.
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e Confocal microscopy: achieving the highest resolution
in optical microscopy.

e Live cell (dynamic) imaging. Tracking microorganisms
and cells 1n order to understand their metabolism etc.
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low read-out rates.

* Recent developments in sSCMOS technology are changing this
by offering low read-out noise (~1-2 electrons) and 100 Hz
frame rates, though best in rolling shutter mode.

* However, do not forget the equivalent loss in detector quantum
efficiency using an EMCCD 1n analog mode.

* At the lowest signal levels, photon counting gives close to the
theoretical full DQE at high frame rates.

EE UNIVERSITY OF
WGP CAMBRIDGE Detector Virtual Workshop, Cambridge: 5 Dec 2011




since ceased manufacturing them.

 In certain applications they had clear advantages so this
is a disappointment for camera designers.

 In particular, their internal amplifiers were much higher
sensitivity (14 uV/e vs. 1.4 uV/e for E2V) and much
lower clock voltages to deliver high gain (20V vs 45V
for E2V) largely eliminating ageing effects.

» Other aspects of the TI design were less desirable.
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« CCD 207:1632 x 1608 pixels of 16 x 16 u, full frame device (not a stock
item)

« CCD 220:240 x 240 pixels of 24 x 24 n, FT device with 8 parallel outputs
giving 1 KHz frame rate.

« CCD 251:1024 x 1024 pixels of 8 x 8 u, FT device 37 MHz output
amplifier. Same physical size as CCD97

* In development:

* (unnamed): 4096 x 4096 pixels of 12 mu.? split frame device with 8
parallel outputs giving 4 Hz frame rate
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« Lidar CCD 223, developed for the European Space Agency
(ESA): single pixel device that runs at very high frequency
with EMCCD multiplication register so effectively solid-state
photomultiplier, 650 nsec/sample max.

« Back illuminated (thinned devices) are available in different
thicknesses and with different antireflection coatings
including a new one soon to be released for maximum 400-
900 nm flat response.
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« Here only the high-
voltage clock 1s a
significant difference.

* The gain 1s adjusted by
changing the high-

voltage peak clock level.
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* The high-voltage clock
may be switched or a
sine wave.

* For high-speed readout
sine wave drivers are
much easier to make and
use much less power.
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1000
« High-voltage stability key :
if operating in analog
mode. v ’
» High gains only important :
in photon counting mode ‘
where the constraints are )
much more relaxed (see L s “ . “

later).
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* The voltage needed to A A
give a gain of 1000x 1s ey s
1.6 V lower at -120°C pra 4

than that needed at ; ,—fé
-60°C. ; /H,
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1llumination levels.

« With reasonable care in system design, many years of
operation will be obtained.

» The ageing effect 1s seen as an increase in the high-voltage
(multiplication) clock level needed to achieve a specific
gain.
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term ageing.
» The ageing 1s principally caused by excessive signal levels
in the multiplication register.

 An increase of 5 V over the life of the device 1s about the
limit before failure occurs.
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Photon Counting with EMCCDs

o All these tests are with
our own camera design
(available from

).

« A substantial overscan
allows effects in the
parallel register to be
separated from those in

L Unitled
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http://www.pixcellent.com/

With the EMCCD the SNR=V (2N).

This 1s equivalent to halving the detective quantum efficiency
of the device.

However, if we threshold the image and replace each event by a
single value equal to the median gain then the variance is
eliminated and the detective quantum efficiency restored.

In photon counting mode, long-term absolute gain stability is
much less important. An event 1s an event 1s an event.
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Mot Log of Histegram of Event Data NMumbers
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give a max. speed of 13-20
MHz,

e All our results here use 30
MHz pixel rate.

MNat Log of Frequency of Each Data Mumber ‘alue

e The gain may be
determined by looking at - ' "
the statistics of the photon T T e T e e e
events sizes detected.
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1t S
working at high gain
it 1s more noticeable
and can seriously
limit sensitivity.
CIC depends
exponentially on
clock high to
substrate bias.
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CIC appears to be relatively unaffected by temperature.

In photon counting operation the gain 1s high (typically x1000-
x2000) so the image/store peak signal requirement 1s extremely
small (<100 electrons).

Allows smaller parallel clock swings to transfer charge
efficiently.

We typically run with 9.5-9.7 V, bringing the surface
completely out of inversion giving ~1-1.5 x 1077 events per
transfer, so less than 0.1% CIC.
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performance can be extremely good and CIC reduced to a
negligible level.

* Commercial cameras that must work with unity gain and high
full well are forced to use larger clock amplitudes inevitably
worsening substantially CIC.

* With our camera design we find parallel CIC to be almost
unmeasurable.
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the multiplication register so they experience on average a gain
that 1s the square root of the rrorr i Not Log of Histogrom of Event Dato Numbers

full register gain.
» Event histograms from both

halves of the readout image

cy of Each Data Number “alue
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e Setting the threshold too
low allows spurious events ST
(the tail of the readout

bers
T T T
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events) to contaminate the
signal.
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* In photon counting mode we achieve maximum DQE.

* Even in analog mode the excellent read noise achievable can allow
operation at extremely low signal levels indeed.

 These cameras can offer astronomers and scientists in other areas
the opportunity to carry out entirely new kinds of research at the
very faintest signal levels.

Thanks to E2V (Paul Jorden) for latest info on E2V future products
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