AC電源ソリューション Agilent 6811B, 6812B, 6813B

シリアル番号 Agilent 6811B: US38390101以上の測定器用 Agilent 6812B: US38390101以上の測定器用 Agilent 6813B: US38390101以上の測定器用

Agilent Technologies

Agilent Part No. 5962-8163

Printed in USA: 2000年9月

本書は"User's Guide AC Power Solutions Agilent Models 6811B, 6812B, and 6813B" (Part No. 5962-0829) (Printed in USA, December, 1998)を翻訳したものです。

- 原 典 -

詳細は上記の最新マニュアルを参照して下さい。

ご注意 本書に記載した内容は、予告なしに変更することがあります。 当社は、お客様の誤った操作に起因する損害については、責任を負いかねますのでご了承ください。 当社では、本書に関して特殊目的に対する適合性、市場性などについては、一切の保証をいたしかねます。 また、備品、パフォーマンス等に関連した損傷についても保証いたしかねます。 当社提供外のソフトウェアの使用や信頼性についての責任は負いかねます。 本書の内容の一部または全部を、無断でコピーしたり、他のプログラム言語に翻訳することは法律で禁止されています。 本製品パッケージとして提供した本マニュアル、フレキシブル・ディスクまたはテープ・カートリッジは本製品用だけにお使いください。プログラムをコピーをする場合はバックアップ用だけにしてください。プログラムをそのままの形で、あるいは変更を加えて第三者に販売することは固く禁じられています。

アジレント・テクノロジー株式会社 許可なく複製、翻案または翻訳することを禁止します。 Copyright © Agilent Technologies, Inc. 2000 Copyright © Agilent Technologies Japan, Ltd. 2000 All rights reserved. Reproduction, adaptation, or translation without prior written permission is prohibited.

納入後の保証について

- ハードウェア製品に対しては部品及び製造上の不具合について保証します。又、当社製品仕様に適合していることを保証します。
 ソフトウェアに対しては、媒体の不具合(ソフトウェアを当社指定のデバイス上適切にインストールし使用しているにもかかわらず、プログラミング・インストラクションを実行しない原因がソフトウェアを記録している媒体に因る場合)について保証します。又、当社が財産権を有するソフトウェア(特注品を除く)が当社製品仕様に適合していることを保証します。
 保証期間中にこれらの不具合、当社製品仕様への不適合がある旨連絡を受けた場合は、当社の判断で修理又は交換を行います。
- 保証による修理は、当社営業日の午前8時45分から午後5時30分の時間帯でお受けします。なお、保証期間中でも 当社所定の出張修理地域外での出張修理は、技術者派遣費が有償となります。
- 当社の保証は、製品の動作が中断されないことや、エラーが皆無であることを保証するものではありません。保証 期間中、当社が不具合を認めた製品を相当期間内に修理又は交換できない場合お客様は当該製品を返却して購入 金額の返金を請求できます。
- 保証期間は、製品毎に定められています。保証は、当社が据付調整を行う製品については、据付調整完了日より開始します。但し、お客様の都合で据付調整を納入後31日以降に行う場合は31日目より保証が開始します。
 又、当社が据付調整を行わない製品については、納入日より保証が開始します。
- 当社の保証は、以下に起因する不具合に対しては適用されません。
 - (1) 不適当又は不完全な保守、校正によるとき
 - (2) 当社以外のソフトウェア、インターフェース、サプライ品によるとき
 - (3) 当社が認めていない改造によるとき
 - (4) 当社製品仕様に定めていない方法での使用、作動によるとき
 - (5) お客様による輸送中の過失、事故、滅失、損傷等によるとき
 - (6) お客様の据付場所の不備や不適正な保全によるとき
 - (7) 当社が認めていない保守又は修理によるとき
 - (8) 火災、風水害、地震、落雷等の天災によるとき
- 当社はここに定める以外の保証は行いません。又、製品の特定用途での市場商品価値や適合性に関する保証は致しかねます。
- 製品の保守修理用部品供給期間は、製品の廃止後最低5年です。

安全性について

本器の操作、保守、修理などの全段階で、次の安全性に関する一般的な注意事項に必ず従ってください。これらの諸注意、あるいは本書に特に記載されている警告に従わなかった場合は、本器の設計、製造および意図した使 用目的に支障を来すことになります。当社は、これらの条件に従わなかった顧客の過失に対しての責任は、一切 負わないものとします。

警告: 危険電圧

AC電源の出力は425Vpです。電源がオンになっている時に出力端子や回路に触れると、感電により人身事故が発生するおそれがあります。

概要

本器は、安全クラス1(感電防止用アース端子付き)の製品です。本器を操作説明書に指定しない方法で使用した場合、感電防止機能が損なわれるおそれがあります。

本器で使用するLEDはすべて、IEC 825-1に従ったクラス1のLEDです。

環境条件

本器は、設置カテゴリII、汚染度2の環境における室内での使用を想定しています。最大相対湿度95%、最大高度 2000メートルで動作するよう設計されています。ACメイン電圧要件および動作周囲温度レンジに関しては、仕 様表を参照してください。

電源を投入する前に

本器の設定が使用する電源電圧に合っていることを確認してください。

本器の接地

危険な電気ショックを防ぐために、本器のシャーシやキャビネットは必ず接地してください。本器とAC電源との接続には3極電源コードを使い、3本目の線を電源コンセントの電気アース(安全アース)に確実につないでください。感電防止用(アース)導体の断線、または感電防止用アース端子の外れが生じると、感電により人身事故が発生するおそれがあります。電圧低下のために外部オートトランスを介して機器に電源を供給する場合、オートトランスの共通端子をAC電源(商用電源)のニュートラル(グランド側)端子に必ず接続してください。

ヒューズ

必要な定格電流、電圧、および指定された種別(ノーマル・ブロー、タイム・ディレイなど)のヒューズのみを 使用してください。修理したヒューズや短絡したヒューズホルダは使用しないでください。感電や火災につなが り、危険です。

爆発性物質の存在する環境で使用しないでください。

本器を可燃性のガスや気体のある場所で使用しないでください。

本器のカバーを外さないでください

本器は、カバーを取り付けたままでご使用ください。部品の交換や内部調整は、修理資格の保有者だけが行います。

本器に損傷または欠陥があると思われる場合は操作を中止し、修理資格の保有者が修理するまで、本器が誤って 使用されないよう気をつけてください。

安全用記号	
	直流
\sim	交流
\sim	直流と交流
$_{3}\sim$	3相交流
Ţ	アース(接地)端子であることを示します。
	感電防止用アース(グランド)端子
\rightarrow	フレームまたはシャーシ端子
\perp	端子はアース電位にあります。 一方の端子がアース電位で動作するように設計された測定回路と 制御回路に使用されます。
Ν	恒久的に設置された機器上のニュートラル・コンダクタ用端子
L	恒久的に設置された機器上のライン・コンダクタ用端子
Ι	オン(電源)
0	オフ(電源)
Q	スタンバイ(電源):この記号が付いたユニットは、このスイッチをオフにしたときにAC主回線 から完全には切断されません。ユニットをAC主回線から完全に切断するには、電源コードを外 すか、有資格電気技術者に外部スイッチの設置を依頼してください。
	双安定プッシュ・コントロールのイン・ポジション
	双安定プッシュ・コントロールのアウト・ポジション
4	注意、感電の危険があります。
<u></u>	注意、表面が熱くなっています。
\triangle	注意(付属のマニュアルを参照してください)
警告	警告記号は、危険を表します。ここに示す手順や方法を正しく実行しないと、人体に危険を及ぼ すおそれがあります。指示された条件を完全に理解し、満たさない限り、警告記号より先に進ん ではいけません。
注意	注意記号は、危険を表します。ここに示す操作手順などを正しく実行しないと、製品の一部また は全部を損傷または破壊するおそれがあります。指示された条件を完全に理解し、満たさない限 り、注意記号より先に進んではいけません。

Declaration Page

Manufacturer's Name:	Agilent Technologies, Inc.
Manufacturer's Address:	140 Green Pond Road Rockaway, New Jersey 07866 U.S.A.
declares, that the product	
Product Name:	a) AC Power Source/Analyzerb) Harmonic/Flicker Test System
Model Number:	a) Agilent 6811B, 6813B, 6812B, 6811A, 6812A, 6813A b) Agilent 6841A, 6842A
conforms to the following Pro	oduct Specifications:
Safety:	IEC 1010-1:1990+A1(1992)/EN61010-1:1993
EMC:	CISPR 11:1990 / EN 55011:1991 - Group 1 Class B IEC 801-2:1991 / EN 50082-1:1992 - 4 kV CD, 8 kV AD IEC 801-3:1984 / EN 50082-1:1992 - 3 V / m IEC 801-4:1988 / EN 50082-1:1992 - 0.5 kV Signal Lines 1 kV Power Lines
Supplementary Information:	
The product herewith a 73/23/EEC and the EM	complies with the requirements of the Low Voltage Directive AC Directive 89/336/EEC and carries the CE-marking accordingly.
Note 1: The product fa	amily was introduced prior to 12/93.
New Jersev J	January 1997
Location	Deta Pruca Vruggar / Quality Managar

音響ノイズ情報

製造元申告書

1991年1月18日発効のGerman Sound Emission Directiveの規定に準拠しています。

- * 音圧Lp <70 dB (A)
- *オペレータ・ポジション
- * 通常の操作
- *N27779 (タイプ・テスト) に準拠

出版履歴

本マニュアルの版歴と現在のリビジョンを下に記載します。本マニュアルに対して細かい修正とアップデートを施 したものは、同じ印刷日付の場合があります。改訂版は新しい印刷日付で識別されます。改訂版には、前回の印刷 日付以降の新規の、あるいは修正された内容がすべて含まれます。

新しいリビジョンの前にマニュアルの変更が必要となった場合、マニュアルに付属の変更シートに記載されます。 変更は特定の機器のみに該当する場合もあります。変更が特定の機器だけに該当するかどうかは、変更シートに記載されています。

本書に記載された情報は著作権によって保護されています。本書のいかなる部分についても、Agilent Technologies の事前の同意がない限り、コピー、再使用、他言語への翻訳を行うことはできません。本書の内容は、予告なしに 変更されることがあります。

© Copyright 1995, 1997, 1998 Agilent Technologies, Inc.

第1版	1995年8月
第2版	1997年2月
第3版	1998年3月
第4版	1998年12月
アップデート	2000年4月

目次

	安全性について	4
	DECLARATION OF CONFORMITY	6
	音響ノイズ情報	7
	出版履歴	7
	目次	9
1	掘曲	10
I	1%女 マニュアル・ガイド	13
	AC電源の初期モデル	14
	安全性について	14
	スエルにノイマーオプションと部品	14
	ジン ジョン Cupu	15
	機能	16
	フロントパネル/リモート操作	16
	定常状態出力特性	17
	ピーク電流/ダイナミック・パワー能力	18
	ピーク電流リミット	18
	ピーク流入例	18
	RMS電流リミット回路	20
	電圧レギュレーション	20
	リアルタイム・レギュレーション	20
	rmsレギュレーション	20
	出力インピーダンス	20
	出力カップリング	21
2	インストール	23
2	検査	23
	損傷	23
	梱包材料	23
	梱包内容	23
	清掃	23
	設置場所	24
	ベンチ式操作	24
	ラック・マウント	24
	入力接続	25
	入力電源と電源ヒューズ	25
	電源コードの設置	25
	出力接続	26
	配線ケーブルについて	27
	電圧降下	27
	リモート・センス接続	27
	リモート・センシングおよびOVPについて	29
	トリガ接続	29
	ディジタル接続	29
	コントローラの接続	30
	GPIBコネクタ	30
	RS-232インタフェース	31

3	電源投入時の点検	33
	進備占焓	22
	キーパッドた市って	24
		24
	山ノ京次 陪宝がみたした担合	26
		30
		30 27
		37
4	フロントパネルの操作	39
	はじめに	39
	フロントパネル説明	39
	System+-	41
	Function +-	42
	即時動作キー	42
	スクロール・キー	42
	Meter表示キー	43
	出力コントロール・キー	44
	保護およびステータス・コントロール・キー	46
	トリガおよびリスト・コントロール・キー	47
	Entry+-	48
	フロントパネル・フログラミング例	49
	1-出力電圧振幅の設定	49
	2 - 出力周波数の設定	50
	3 - DCオフセットの設定	50
	4 - 保護機能の設定	51
	5-保護状態のクリア	51
	6 - 過渡電圧モードを使って	52
	7-トリガ遅延と位相の同期化	55
	8-スルー・レートを使って波形を生成する方法	57
	9 -ビーク流入電流の測定	59
	10 - GPIBアドレスとRS-232バラメータの設定	60
	11 - 操作状態のセーフとリコール	60
А	仕様	61
	仕様	61
	補足特性	63
	45Hz未満の低周波動作	65
в	検査と校正	67
-	はじめに	67
	必要な装置	67
	テストのセットアップ	68
	検査テストの実施	69
	電源投入と点検手順	69
	AC電圧プログラミングとリードバック確度	69
	DC電圧プログラミングとリードバック確度	70
	RMS電流確度テスト	70
	校正手順の実施	73
	フロントパネル校正メニュー	73

フロントパネル校正	74
校正モードのイネーブル	74
電圧オフセット値の校正と入力	74
DC電圧ゲイン値の校正と入力	75
AC rms電圧ゲイン値の校正と入力	75
OVPトリップ・ポイントの校正	76
rms電流値の校正と入力	76
rms電流測定値の校正と入力	77
出力インピーダンスの校正	77
校正定数の保存	77
校正パスワードの変更	78
校正エラー・メッセージ	78
GPIBでの校正	78
Agilent 校正プログラム・リスト	78
C エラー・メッセージ	83
エラー番号リスト	83
D 電源電圧変換	87
装置のカバーを外す	87
ジャンパ・ワイヤをチェックする(Agilent 6811B/681	2Bの場合のみ) 87

ジャンパ・ワイヤをチェックする(Agilent 6811B/6812Bの場合のみ)	87
電源ジャンパをチェックする(全モデル)	87
電力変圧器コネクタをチェックする(全モデル)	87
装置のカバーをはめる	88

索引

89

マニュアル・ガイド

本書は、Agilent 6811B/6812B/6813B AC電源の操作について説明します。本書では、「AC電源」として説明しています。AC電源には、以下のマニュアルがついています。

- ◆ クイック・スタート・ガイド AC電源の操作をすばやく開始するために使用します。
- ◆ ユーザーズ・ガイド(本書)-インストール、装置点検、フロントパネル情報などの詳細を説明しています。
- ◆ Programming Guide GPIBプログラミングの詳細情報について説明しています。
- ◆ Quick Reference Card 装置を使い慣れた方のための参照ガイドとしてお使いください。

これらのガイドでは、以下のタスクについての情報を含んでいます。全項目については、各ガイドの目次をご参照ください。

項目	参照ガイド
アクセサリおよびオプション	本書の第1章
AC電源の校正	本書の付録B
フロントパネル・キー	本書の第4章
フロントパネル・プログラミング例	本書の第4章
電源電圧の接続	本書の第2章
電源電圧の定格	本書の付録A
電源電圧変換	本書の付録D
オペレータ取り替え部品	本書の第1章
オペレータによるトラブルシューティング	本書の第3章
操作特性	本書の付録A
性能仕様	本書の付録A
動作点検	本書の第3章
ラック・マウント	本書の第2章
RS-232動作	本書の第2章
SCPIプログラミング・コマンド	プログラミング・ガイドの第3章
SCPIプログラミング例	プログラミング・ガイドの第4章
電源投入/点検	本書の第3章
配線ケーブル-ディスクリート・フォールト・インジケータ (DFI)	本書の第2章
- GPIBコントローラ	本書の第2章
-1個の負荷または複数負荷	本書の第2章
- 電圧センシング(ローカルまたはリモート)	本書の第2章
- リモート禁止(RI)機能	本書の第2章

1-概要

AC電源の初期モデル

本書に記載する情報は、リードバック仕様のわずかな違いを除き、AC電源の以下の初期モデルにも適用されます。

現在のモデルに 関する情報は、	以下の初期モデルにも適用されます。
Agilent 6811B	Agilent 6811A AC電源/アナライザ
Agilent 6812B	Agilent 6812A AC電源/アナライザ ノーマル・モードのAgilent 6841A ハーモニック/フリッカ・テスト・
	システム
Agilent 6813B	Agilent 6813A AC電源/アナライザ ノーマル・モードのAgilent 6842A ハーモニック/フリッカ・テスト・ システム

安全性について

本器は、安全性クラス1適合のAC電源で、感電防止アース端子がついています。この端子は、グラント・コンセントのある電源を介してアースに接続されていなければなりません。安全性については、本書はじめの安全性のまとめのページを参照してください。インストールおよび操作の前にAC電源を点検して、本書の安全性の注意と指示の項をよくお読みください。特定の手順に関する安全性の注意は、本書の該当する箇所にあります。

オプションと部品

オプション	モデル	説明
0BN	All	追加マニュアル
ICM	All	ラック・マウント・キット(Agilent部品番号5062-3977)
ICP	All	ハンドル付きラック・マウント・キット(Agilent部品番号5062-3983)
100	Agilent 6811B/6812B	87-106VAC, 48-63Hz (日本のみ)
200	Agilent 6813B	174-106VAC, 48-63Hz(日本のみ)
230	Agilent 6811B/6812B	191-254VAC, 48-63Hz
831	Agilent 6812B/6813B	12AWG, 200-240VAC, 終端なし
832	Agilent 6813B	ワイヤ・サイズ4mm ² , 終端なし
833	Agilent 6812B	ワイヤ・サイズ1.5mm ² , 200-240VAC, 終端なし
834	Agilent 6812B	10AWG, 100-120VAC, 終端なし
841	Agilent 6812B/6813B	電源コード, NEMA6-20P; 20A, 250Vプラグ付き
842	Agilent 6813B	電源コード, IEC309, 32A, 220Vプラグ付き
844	Agilent 6813B	電源コード, NEMA 6-30P, 30A, 250Vロッキング・プラグ付き
845	Agilent 6812B	電源コード, IEC309; 16A, 220Vプラグ付き
846	Agilent 6812B	電源コード, NAMA L5-30P; 30A, 120Vプラグ付き
847	Agilent 6812B	電源コード, CEE 7/7; 16A, 220Vプラグ付き
848	Agilent 6812B	電源コード, BS 546; 15A, 240Vプラグ付き

表1-1. オプション

オプション1CMおよび1CPの使用による本製品のラック・マウント時には、サポート・レール(Agilent部品番号 1494-0059)が必要です。

Agilent 6811Bには、仕向け国に合わせた適切な電源コードが付属しています。

以下の表には、ユーザによる交換が可能な一般的な部品がリストされています。

表1-2.	オペレータ	による交換が可	可能な部品のリスト
-------	-------	---------	-----------

製品	Agilent部品番号
電源コード・アセンブリ	「オプション」を参照
ラック・マウント・キット	「オプション」を参照
4端子ディジタル・コネクタ・プラグ	1252-1488
AC入力安全カバー(緩衝部およびブッシング付き)	5040-1676
ネジ(3), AC入力障壁ブロック(6-32×5/16in)	なし
AC出力安全カバー	5040-1704
Agilent 6812B用電源ヒューズ (30A)	2110-0910
Agilent 6813B用電源ヒューズ (25A)	2110-0849
Agilent 6811B用電源ヒューズ (20A)	2110-0098
ネジ(2), AC出力安全カバー(m4×0.7in)	0515-0053
ネジ(5), AC出力障壁ブロック(6-32×5/16in)	なし
ユーザーズ・ガイド (本書)	5962-0829
プログラミング・ガイド	5962-0889
クイック・スタート・ガイド	5962-0883
クイック・リファレンス・カード	5962-0885

説明

AC電源は、次図に示したように3つの装置を1つのユニットに納めたものです。DACでは、振幅、周波数、波形シェー プをプログラムした波形を生成できます。電源では、DACの信号を贈幅して、アプリケーションごとにAC電力を生 成します。測定ブロックでは、rms電圧/rms電流の単純なリードバックから、波形の解析といった高度な機能までを 実行します。

図1-1. AC電源の機能

1-概要

このユーザーズ・ガイドでは、AC電源の次のモデルについて説明します。

モデル	説明
Agilent 6811B	0-300Vrms; 375VA (425Vビーク; 40Aビーク)
Agilent 6812B	0-300Vrms; 750VA (425Vビーク; 40Aビーク)
Agilent 6813B	0-300Vrms; 1750VA (425Vビーク; 80Aビーク)

機能

- ◆ AC電圧、DC電圧、周波数、位相、電流リミットをプログラム可能
- ◆ 正弦波、方形波、クリップ正弦波、ユーザ定義の波形
- ◆ 出力インピーダンスをプログラム可能
- ◆ 電圧および周波数スルー制御
- ◆ 高分解能・高確度周波数、低波形ひずみ、位相遷移時もグリッチのない合成波形の生成
- ◆ サージ、サグ、ドロップアウト、その他のライン障害を発生させる、ステップおよびパルス出力過渡波形
- ◆ 複合出力過渡波形やテスト・シーケンスを発生させる、不揮発性リスト・プログラミング
- ◆ 不揮発性ステートおよび波形ストレージおよびリコール
- ◆ 拡張測定機能:

AC rms, DC, AC+DC電圧/電流、ピーク電流

有効電力、無効電力、および皮相電力

電圧/電流波形の高調波解析では、最高50次の高調波について振幅、位相、トータル高調波ひずみの結果が 得られます。

ディジタル化された電圧/電流のトリガ捕捉と捕捉後の計算

全測定を16ビットの分解能で実施

- ◆ 過渡イベントや測定を外部信号と同期化するトリガ入力およびトリガ出力
- ◆ 14文字ブラウン管ディスプレイ、キーパッド、ロータリ・ノブを使った、電圧および周波数設定のフロントパネ ル制御
- ◆ SCPIコマンド言語を用いたGPIBおよびRS-232内蔵インタフェースのプログラミング
- ◆ 過電圧、過電力、過電流、過熱、RI/DFI保護機能
- ◆ 出力およびセンス切断リレー内蔵
- ◆ シャーシ・グラントに対する出力端子のフローティング
- ◆ セルフテスト、ステータス・リポート、ソフトウェア校正などの拡張機能

フロントパネル/リモート操作

フロントパネルでは、ロータリ・ノブ(RPG)とキーパッドの両方を使って、出力電圧および周波数の設定を制御できます。フロントパネル画面では、複数の出力測定の読み取り値がディジタル表示されます。インジケータは、 AC電源の動作状態を表示します。Systemキーを使うと、GPIBアドレスの設定や動作ステートのリコールといった システム機能が実行できます。フロントパネルのFunctionキーから、AC電源のファンクション・メニューにアクセ スできます。フロントパネルのEntryキーは、パラメータの値を選択したり入力するのに使います。フロントパネル 制御の詳細については第4章を参照してください。 リモート・プログラミングは、GPIBバスまたはRS-232シリアル・ポートのいずれかから行うことができます。GPIB およびRS-232のプログラミングでは、SCPIコマンド(プログラム可能装置用標準コマンド)を用いることによって、 AC電源のプログラムとその他の装置のプログラムに互換性をもたせます。AC電源のステータス・レジスタにより、 AC電源の様々な動作状態をリモート・モニタリングできます。

定常状態出力特性

次の図には、AC電源の定常状態出力特性が示されています。定常状態特性は、無限にAC電源により保持される出 力定格として定められます(「ピーク電流能力」の箇所では、本装置のダイナミック出力機能について説明されてい ます)。下図には、ACおよびDCの両特性が示されています。プログラム可能な出力カップリングにより、AC電源 ではACおよびDC出力電圧を供給します。

AC電源の動作仕様は、45~1000Hzの範囲となります(付録Aを参照)。ただし、45Hz未満の周波数でも装置を動作 できますが、この場合の動作仕様については、付録Aの表A-3を参照してください。

図1-2. 定常状態出力特性

注記 AC電源のリモート・プログラミングの詳細については、『プログラミング・ガイド』を参照してく ださい。

ピーク電流/ダイナミック・パワー能力

AC電源では、装置のrms電流能力を超えるピーク電流を生成することができます。これは、ACモードでの動作時に 限らず、DCモードでの出力パルスのプログラミング時にも同様に行われます。装置は40A(Agilent 6811B/6812B) または80A(Agilent 6813B)までのピーク出力電流を生成できますが、この出力は制限時間の間だけ保持できます。 装置の出力がセーフ・オペレーティング・エリア(SOA)のリミットを超えると、内部保護モードが起動され、出 力がオフにされます。SOAリミットは出力電圧、出力電流、出力持続時間、およびヒートシンク温度に基づいて決 定されます。

注記	内部保護モードが起動されているときに装置をクリアする方法については、	第4章を参照してくだ
	さい。	

ピーク電流リミット

ピーク電流リミットをプログラミングすることにより、装置がセーフ・オペレーティング・エリアを超え、内部保 護モードを起動して、出力をオフにすることを避けることができます。ピーク電流リミット回路では、瞬時出力電 流を制限します。出力ピーク電流をプログラムされたリミット範囲内に保持するために瞬時出力電圧を降下させる ことにより、これは機能します。この回路は瞬時に動作するので、出力電圧波形のピークをクリップすることがで きます。さらに、高速・大振幅の電圧遷移に伴い、出力コンデンサの電流により、装置は瞬間的にCCオペレーティ ング・モードに入ります。これにより、出力電圧の変化のレートが制限されます。

次の表に、SOAリミットを超過しないように装置がピーク出力電流に耐えられる時間の長さについておよその指標 を示します。これらの値は電圧に依存するので、表には、ピーク電流値とともに各種の等価DC電圧が示されていま す。表に示された電圧はプログラミングされる電圧ではなく、示された高電流条件のときに出力に送られる平均電 圧値です。SOA回路は、高電圧・電流値および持続時間が長いときにアクティブになります。

Arilant CO12D	Agilent 6811B	電流フロー時の等価DC電圧 ¹					
Aglient 6813B	Agilent 6812B	25	75	125	190	250	360
20A	10A	>100ms	>100ms	>100ms	>100ms	>100ms	>100ms
30A	15A	>100ms	100ms	30ms	24ms	19ms	15ms
40A	20A	12ms	9.2ms	8.4ms	7.6ms	6.8ms	5.9ms
50A	25A	5.6ms	5.1ms	4.7ms	4.4ms	4ms	3.5ms
60A	30A	3.7ms	3.4ms	3.1ms	2.9ms	2.6ms	2.3ms
70A	35A	2.6ms	2.4ms	2.2ms	2.1ms	1.9ms	1.7ms
80A	40A	2ms	1.8ms	1.7ms	1.6ms	1.4ms	1.3ms

表1-3. ピーク電流出力能力(代表値)

150℃未満のヒートシンク温度、25℃の周囲温度に基づいています。

ピーク流入例

次の表には、負荷容量のの関数としてAC電源出力が127VACまたは254VAC,60Hz正弦波のときの推奨初期I_{peak}設定 を示します。出力の負荷は、示されたコンデンサに伴う全波ブリッジです。コンデンサ回りの負荷抵抗は無限です。 推奨I_{peak}は、次に示す通り、入力における変化の関数として変化します。

- ◆ 電圧を上げる時、Ipeak設定は下げなければなりません。
- ◆ 周波数を上げる時、Ipeak設定は上げることができます。
- ◆ 負荷抵抗を下げる時、Ipeak設定は下げなければなりません。

I_{peak}電流のプログラミングの目的は、SOAリミットの超過や出力オフの結果として装置が内部保護モードを起動し ないようにすることです。出力のオン時、SOA回路がトリップするときはこれらの初期設定を下げなければならな い場合があります。I_{peak}の適正値に到達するには、場合によって、試行とエラーを繰り返さなければなりません。

容量	I _{peak} 設定	
127V	254V	
≦1100	500	80A
1200	_	60A
1700	700	50A
5000	1000	45A
> 5000	> 1000	<45A

表1-4. ループ容量の関数としての推奨Ineak設定

次の波形には、AC電源の流入電流能力を示します。AC電源の出力がオフにならないように、ピーク電流は表1-3に 従って、流入時には制限されます。電流がピーク電流リミット設定以下に降下すると、出力電流波形は通常の形状 に戻ります。

図1-3. ピーク流入電流例

1-概要

RMS電流リミット回路

出力rms電流リミットは、装置の許容範囲内であれば、任意の値に調整できます。プログラミングされたリミット を超える高電流を負荷が引き込もうとすると、rms電流がリミット内に収まるように出力電圧が降下します。出力電 圧が降下すると、波形の形状は保持されます。すなわち、ピークだけでなく電圧サイクルのすべての部分が下がり ます。

注記 mms 電流回路が動作するときの速度は、出力電圧設定と負荷インピーダンスに左右されます。低出 力電圧および高出力インピーダンスのときは、回路の反応は低速になります。パワーが一定で抵抗 負荷が負のときは、mms電流リミット回路が出力電圧をゼロにします。

電圧レギュレーション

リアルタイム・レギュレーション

AC電源が使用する出力レギュレーションのデフォルト方式は、リアルタイム電圧レギュレーションです。リアルタ イム電圧レギュレーションでは、実際にプログラミングされた波形をAC電源の出力に送出しようとします。この場 合、最適な全体的プログラミング応答および最高速のセトリング時間が提供されます。周波数成分が45Hz以下であ れば、波形および遷移の制限はありません。

rmsレギュレーション

rms電圧レギュレーションではリアルタイム・レギュレーションの補助として用いられ、出力電圧のAC成分のrms値を一定にします。rms電圧レギュレーションは、以下の状況で使用してください。

- ◆ 負荷が大きいときに負荷レギュレーション効果がある場合
- ◆ 負荷が大きいときに周波数レギュレーションの問題が発生し、高周波数のときにより一定したプログラミング 確度が必要とされる場合
- ◆ プログラム可能な出力インピーダンスを使用して、ソース・インピーダンスの増加時に、出力電圧のrmsレベル を保持したい場合(詳細については、出力インピーダンスを参照してください)

電圧レギュレーションを指定するコマンドはVOLT:ALC:DET RTIM | RMSです。

注記 45Hz未満の周波数での動作時には、rms電圧レギュレーションを使用しないでください。

出力インピーダンス

AC電源の出力インピーダンスの抵抗・リアクタンス(抵抗性・誘導性)部分をプログラミングすることができま す。誘導出力インピーダンスは、20~1000マイクロヘンリの範囲でプログラミングできます。また、抵抗負荷イン ピーダンスは、0~1Ωの範囲でプログラミングできます。

出力インピーダンスのプログラミング時に負荷インピーダンスを下げれば下げるほど、使用可能な、出力電圧の安 定性を保持できるインピーダンスのプログラミング値は小さくなります。このことは、1Ω未満の負荷インピーダン スの場合に特に該当します。 注意 AC電源の出力インピーダンスを、負荷に対し低インピーダンスでプログラミングすると、出力電圧 が不安定になり、AC電源が損傷する可能性があります。プログラミング可能な抵抗またはインダ クタンスによりAC電源を動作させるときは、安定性が必ず確保されなければなりません。

安定性を確認するには、オシロスコープで出力電圧を観察します。発振が5kHz~20kHzの場合(これは、AC電源のプログラミング用インダクタンスおよび負荷の容量により異なります)以下の手順において不安定性が確認できます。

- 1. インダクタンスのプログラミング時は、まず直列抵抗を付加することをお勧めします。そのためには、出力抵抗を1Ωにプログラミングするか、または同等の外部抵抗を付加します。
- 電圧の不安定性をみるために、出力を観察しながら、インダクタンスを希望のレベルにゆっく りプログラミングします。出力に不安定性の兆候が現れたならば、それ以上は作業を進めない でください。
- 3. 低出力抵抗が必要な場合は、電圧の不安定性を見るために出力を観察しながら、ゆっくり抵抗 を下げ始めてください。出力に不安定性の兆候が現れたならば、それ以上は作業を進めないで ください。

この手順で納得できる結果が得られないときは、出力インピーダンス・コントロールをディスエー ブルにし、外部インピーダンス網を使用してください。

プログラミング可能な出力インピーダンスとともに、rms電圧レギュレーションを用いて、出力電圧のAC成分のrms 値をレギュレーションできます。このようなレギュレーションを行うのは、負荷が非直線的のためプログラミング されたインピーダンスが歪みを起こしたり、レギュレーション効果により出力電圧が下がったときなどです。

リアルタイム電圧レギュレーションでは、プログラミングされたインピーダンスと電源から引き込まれた電流に基づいて負荷電流が出力電圧の劣化を引き起こします。一方、rmsレギュレーションではプログラミングされたレベルでrms値を再設定します。

出力カップリング

AC出力カップリング・モードでは、変圧器結合出力がシミュレーションされ、ゼロ平均出力電圧を保持するために 機能します。すなわち、出力では出力のDC成分を除去するための処理を行おうとします。これは、DC成分が、プ ログラムされたオフセットから生成される場合も、DC成分に伴う遷移の結果として生成される場合も、同様です。 AC出力カップリングは約2Hzのコーナ周波数を持ちます。これは、短期DC成分を持つ遷移波形を妨げませんが、定 常状態におけるゼロ・ボルトの平均値に波形を規制します。

DC出力カップリング・モードを使用して、DCオフセット電圧または出力遷移(純DC成分を持つ)を生成できます。 どちらのモードの場合も、AC電源により出力できる最大電圧は±425Vpeakとなります。

出力のAC機能は、電力(ワット)ではなくVA(ボルト・アンペア)により制限を受けます。負荷に使用可能なVA の大きさは、図1-2のように規定されます。すなわち、300Vの最大rms電圧および最大rms電流(モデルにより異な る)により境界が設けられること以外には、何の制約もなくフル出力VAを使用できます。大きいピーク・パワー遷 移は、「ピーク電流能力」の箇所で前述したように、AC電源により実現されます(AC電源の仕様と補足特性につい ては、付録Aを参照してください)。 1-概要

インストール

検査

損傷

AC電源を入手した際に、輸送中に受けた損傷がないかどうか検査してください。もし損傷があった場合は、運搬業者とAgilent計測お客様窓口に直ちにお知らせください。保証については、本書の表紙裏に記載されています。

梱包材料

AC電源の点検が済むまで、返品の事態に備えて出荷時のダンボール箱と梱包材料は保存しておいてください。 Agilentサービス・センタに返品する場合は、モデル番号と所有者を明記したタグを付け、損傷の内容についての簡 単な説明を入れてください。

梱包内容

AC電源と一緒に以下のものが揃っていることを確認してください。

- 電源コード 設置場所に適した電源コード。電源プラグで終端されている場合とそうでない場合があり ます(第1章の「オプション」を参照してください)。電源コードが入っていない場合は、 お近くのAgilentお客様窓口までご連絡ください。
- ディジタル・コネクタ 4端子のディジタル・プラグで装置背面に接続します。

安全カバー 緩衝部付きAC入力カバー AC出力カバー

マニュアル コーザーズ・ガイド プログラミング・ガイド クイック・スタート・ガイド クイック・リファレンス・カード

変更ページ 必要に応じて、本書の変更シートが含まれています。その場合は、本書の指示された箇所 を訂正してください。

清掃

乾いた布または水で軽く湿らせた布を用い、外部ケースの各部位を清掃してください。内部の清掃は行わないでください。

警告 感電事故を防ぐため、本器の電源プラグを抜いてから清掃を行ってください。

設置場所

環境条件の安全性については、本書はじめの安全性のまとめのページを参照してください。

 答告 Agilent 6811B/6812Bの装置質量は28.2kgです。
 Agilent 6813Bの装置質量は32.7kgです。
 装置をラックに載せたり、ラック上で動かすときは、十分に注意してください。

ベンチ式操作

図2-1の外形図で、AC電源の外形寸法を示しています。ラック・マウントを使用する場合は、脚部を外します。AC 電源を設置する際は、空気循環が適切に行われるよう、キャビネットの左右および背面に十分なスペースを空けて ください。左右のスペースは、最低25mmは必要です。装置背面にある冷却ファンの排気口をふさがないようにし てください。

ラック・マウント

AC電源は、19インチの標準ラック・パネルはたはキャビネットに載せることができます。ラック・マウント・キットはオプションICMの指定で購入できます。インストールの指示は、各ラック・マウント・キットの中に含まれています。Agilent AC電源には、ラック・マウント・キットのほかに機器サポート・レールも必要です。通常、サポート・レールはラック・マウント・キットに付属していないので、キャビネットと一緒に購入する必要があります。

図2-1. 外形図

入力接続

入力電源と電源ヒューズ

AC電源は、リアパネルのLine Ratingsラベルに示されているように、単相AC電源から動作させることができます。 詳細については、付録Aの表A-1の「AC入力定格」を参照してください。

注記 AC電源は、他の装置がこのAC電源から電流を消費することのない専用のラインに接続しなければ なりません。

電源ヒューズは、AC電源内部にあります。ヒューズの交換については、第3章の「障害が発生した場合」を参照してください。

電源コードの設置

AC電源付属の電源コードには、片端に電源プラグが付いている場合と付いていない場合があります。図2-2には、各種の電源プラグが示されています。コードのもう片方の端には、終端コネクタを接続します。

図2-2. 電源コード・プラグ構成

警告 電源コードの設置は、資格を持った電気技師が現地の電気規約に従って実施しなければなりません。

図2-3を参考にして、以下の手順を行ってください。

- a. 電源コード⑥に、緩衝コネクタ⑨、安全カバー⑤、ゴム・ブーツ⑧、コネクタ・ナット⑦を取り付けます(ま だ取り付けられていない場合)。
- b. グラント・ワイヤ②をシャーシ・アース・グラント・スタッドに固定します。
- c. ニュートラル・ワイヤ①をN電源入力端子に接続します。
- d. ライン・ワイヤ③をLI電源入力端子に接続します。
- e. 電源入力端子に安全カバーをかぶせて、カバーと緩衝コネクタ・ネジをしっかり締めます。

図2-3. 電源コードの接続

出力接続

出力端子ブロックには、フローティング出力端子接続と、リターン接続のためのフローティング・ニュートラル・ ラインがあります。これとは別に、アース端子が端子ブロックの右端にあります。

図2-4. 出力接続

配線ケーブルについて

注記	AC電源出力が不安定になる可能性を最小限に抑えるため、	負荷リードをできるだけ短くして、
	まとめて結んでおいてください。	

電流定格

火事の危険 安全条件を満たすため、AC 電源の最大ショート電流を導通した場合に過熱しないように十分に大きいサイズの負荷ケーブルを使用しなくてはなりません。複数の負荷がある場合、負荷配線ケーブルを複数組使用してAC電源のフル定格電流を安全に導通できるようにしなければなりません。

表2-1は、AWG (American Wire Gage) 銅線ケーブルの特性をまとめたものです。

AWG No.	電流容量 ¹	抵抗 ² (Ω/m)	AWG No.	電流容量 ¹	抵抗 ² (Ω/m)
14	25	0.0103	6	80	0.0016
12	30	0.0065	4	105	0.0010
10	40	0.0041	2	140	0.00064
8	60	0.0025	1/0	195	0.00040
		注	記:		
1. 電流容量は、周囲温度30℃で導線温度60℃を基準にしています。30℃以外の周囲温度については、 上記の電流容量に次の定数を掛けます。					については、
温度(℃))	定数	温度 (℃)	Ŷ	昷度 (℃)
21-25		1.08	41-45		0.71
26-30		1.00	46-50		0.58
31-35		0.91	51-55		0.41
36-40		0.82			
2.抵抗は、75℃配線温度での公称値です。					

表2-1. 標準銅線ケーブル性能および抵抗

電圧降下

配線ケーブルのインピーダンスによる過度の電圧降下を防ぐため、負荷ケーブルは十分に大きなサイズでなくては なりません。一般に、ケーブルが加熱せずに最大ショート電流を導通できる太さのものであれば、過度の電圧降下 の問題はありません。一般に使用されているAWG銅線ケーブルの電圧降下の算出には、表2-1を参照してください。 負荷レギュレーションが問題となる場合は、「リモート・センス接続」の説明を参照してください。

リモート・センス接続

AC電源の操作中は、装置背面の出力端子で出力電圧をセンスします。装置**背面**の外部センス端子を使うと、負荷に おいて出力電圧をセンスし、負荷ケーブルにおけるインピーダンスの損失を補正できます。以下の図を参照して、 次のことを行います。

2-インストール

- ◆ 位相1(ϕ1)のセンス端子を、対応する出力端子に接続される負荷側に接続します。
- ◆ ニュートラル (COM) センス端子のコネクタを負荷のニュートラル側に接続します。
- ◆ センス・コネクタに接続されるすべての信号線をツイストおよびシールド処理します。

センス・リードは、AC電源のフィードバック・パスの一部で、性能を最適化した状態で維持するために、抵抗を低く保たねばなりません。センス・リードを注意深く接続して、開放回路にならないようにします。

注意 センス・リードが未接続のままか、あるいは操作中に開放回路になった場合、AC電源は出力端子でレギュレートされ、プログラムされたリミット値よりも40%ほど出力電圧を増加させます。センス・リードが接続されていない場合、メータ回路は出力電圧におけるこの増加を読み取ることはできません。

ALCコマンドをEXT(外部)に設定すると、リモート・センシングをイネーブルにできます。ALCコマンドは、 Voltageキーの下にあります。これについては、第4章で説明します。また、ALCコマンドをINT(内部)に設定する と、リモート・センシングをディスエーブルにできます。

注記 外部リレーを使用して負荷およびセンス接続を切断したり接続したりしている場合は、リモート・ センシングのイネーブル時にセンス接続が開放されないようにしてください。まずリモート・セン シングをディスエーブルにしてから、センスおよび負荷接続を開放してください。

図2-5. リモート・センス接続

リモート・センシングおよびOVPについて

リモート・センスを利用する場合、負荷リードの電圧が降下すると、使用可能な負荷電圧が下がります(付録Aの「リモート・センシング機能」を参照してください)。この電圧降下をカバーするためにAC電源の出力が増加するので、プログラムされた電圧と負荷リードの降下合計は、AC電源の最大電圧定格を超える場合があります。これによって、負荷の電圧ではなく出力端子の電圧をセンスするOVP回路がトリップされます。リモート・センシングを使用する場合、出力端子と負荷の間の電圧降下を補正するよう、OVPトリップ電圧を十分に高い値にプログラムしてください。

注記 負荷によりピーク電流リミット回路がアクティブになると、出力の電圧遷移によりOVP回路のやっかいなトリップが起こります。

トリガ接続

リアパネルにあるBNCトリガ・コネクタを使って、トリガ信号をAC電源につなぎ、またAC電源からトリガ信号を 発生させます。トリガ・コネクタの電気特性については、付録Aで説明しています。外部トリガのプログラミング についての詳細は、AC電源『プログラミング・ガイド』の第4章をご覧ください。

- トリガIN 立ち下がりの外部トリガ信号にAC電源をトリガさせます。
- トリガOUT 選択した過渡出力が発生した場合に立ち下がりのパルスを生成します。

ディジタル接続

このコネクタはリアパネル上にあって、フォールト信号とインヒビット信号を接続します。フォールト(ELT)信号は、フロントパネルではDFI信号と呼ばれ、またSCPIコマンドとも呼ばれます。インヒビット(INH)信号は、フロントパネルではRI信号と呼ばれ、またSCPIコマンドとも呼ばれます。

このコネクタで使用できる配線ケーブルのサイズは、AWG22~AWG12です。配線接続を行うには、接続プラグを 外します。ディジタル・コネクタの電気特性については、付録Aで説明します。ディジタル・コネクタのプログラ ミングについての詳細は、AC電源『プログラミング・ガイド』の第4章をご覧ください。

注記 ディジタル・コネクタに接続されるすべての信号線には、ツイストおよびシールド・ワイヤを使用 するのが賢明です。

次の例では、AC電源のFLT/INH回路の接続方法を示しています。

例Aでは、装置の出力をディスエーブルにする必要がある場合いつでも、INH入力はピン+からピン⊥をショートするスイッチに接続されます。これによってリモートインヒビット(RI)回路がアクティブになり、AC出力をオフにします。フロントパネルのProtインジケータが点灯し、Questionable Status EventレジスタにRIビットが設定されます。 装置を再びイネーブルにするには、まず+と⊥のピンの間の接続をオープンにし、それから保護回路をクリアします。この操作は、フロントパネルを使用するかまたはGPIB/RS-232で実行できます。

2-インストール

例Bでは、1つの装置のFLT出力が別の装置のINH入力に接続されています。どちらかの装置がフォールトの状態に なると、コートローラか外部回路のどちらかによって、介在なしにそれらがすべてディスエーブルになります。コー トローラは、Questionable Statusサマリ・ビットが発したサービス・リクエスト(SRQ)を介してフォールトを認識 します。

図2-6. FLT/INHの例

コントローラの接続

GPIBまたはRS-232コネクタのいずれかにより、AC電源をコントローラに接続できます。

GPIBコネクタ

AC電源はそれぞれ独自のGPIBバス・アドレスをもっています。AC電源は、直列構成バス、スター構成バス、また はその2つの混合構成バスに接続できます。コントローラのGPIBインタフェースには、1~15のAC電源を接続でき ます。

注記 工場出荷時のAC電源は、GPIBアドレスが5に設定されています。このアドレスは、本書の第4章の 説明に従って変更できます。

RS-232インタフェース

AC電源にはRS-232プログラミング・インタフェースがあります。このインタフェースは、フロントパネルのAddress キーの下にあるコマンドによって動作可能になります。RS-232インタフェースを選択すると、GPIBインタフェース はディスエーブルにされます。

インタフェース・コマンド

すべてのSCPIコマンドは、RS-232プログラミングで使用できます。SYSTem:LOCal, SYSTem:REMote, SYSTem:RWLock コマンドは、RS-232インタフェースでのみ使用できます。

SYSTem:LOCal RS-232操作時に、AC電源をローカル・モードにします。フロントパネルのキーは使用できます。

SYSTem:REMote RS-232 操作時に、AC電源をリモート・モードにします。LOCALキー以外のフロントパネル・ キーはすべてディスエーブルになります。

SYSTem:RWLock RS-232操作時に、AC電源をリモート・モードにします。LOCALキーを含むすべてのフロント パネル・キーがディスエーブルになります。

RS-232データ・フォーマット

- ◆ 11ビット・データ・フォーマット
- ◆ 1スタート・ビット
- ◆ 7データ・ビット+パリティ・ビット(奇数または偶数)、またはパリティなしの8データ・ビット(パリティ・ ビットは"0")
- ◆ 2ストップ・ビット

また、次のボー・レートの中からひとつを指定できます。300 600 1200 2400 4800 9600

注記 AC電源では、ボー・レートにかかわらず、1スタート・ビットと2ストップ・ビットを常に使用し ます。スタート・ビットとトップ・ビットの数はプログラミングできません。

RS-232コネクタ

RS-232コネクタはDB-9,オス・コネクタです。適正に構成されたDB-25コネクタを使用すれば、AC電源をどのよう なコンピュータや端末にでも接続できます。この場合、標準のHP 24542Gまたは24542Hインタフェース・ケーブル が使用できます。

表2-2.	RS-232コネクタ	

	ピン	入力/出力	説明
1 2 2 4 5	1	出力	サービス用に確保
1 2 3 4 5	2	入力	データ受信 (RxD)
	3	出力	データ送信(TxD)
$\bigcirc \circ \circ \circ \circ \circ \circ \bigcirc \bigcirc$	4	出力	データ端末レディ(DTR)
	5	共通	信号グランド
	6	入力	データ・セット・レディ (DSR)
6789	7		接続なし
0709	8		接続なし
	9	出力	サービス用に確保

注記 構成がリモート操作用でない場合にRS-232インタフェースを介してデータの送受を行うと、予期しない結果が生じることがあります。RS-232インタフェースを使用するときは必ずAC電源をリモート操作用に構成してください。

2-インストール

ハードウェア・ハンドシェーク

RS-232インタフェースでは、バス・コントローラへのホールドオフ信号として、DTR(データ端末レディ)ライン を使用します。DTRが真ならば、バス・コントローラはAC電源にデータを送ることができます。DTRが偽の場合、 バス・コントローラは10文字以内でデータの送信を停止しなければならず、DTRが再び真になるまでデータを送信 できません。AC電源は、次の2つの条件のときにDTRに偽をセットします。

- 1. 入力バッファが一杯の場合(約100文字が受信された状態)、DTRは偽にセットされます。文字が削除されて入 カバッファに十分なスペースができると、DTRは真にセットされます(ただし、次に述べる条件2の場合を除く)。
- 2. AC電源が「トーク」を求めている場合(すなわち、問合せを処理して <newline>メッセージ・ターミネータが あった場合)、DTR偽がセットされます。つまり、一旦問合せがAC電源に送られると、バス・コントローラは、 次のデータを送る前にそのレスポンスを読み取らなくてはならないということです。また、<newline>のところ でコマンド文字列を終了させなければならないということも、意味します。レスポンスの出力後、AC電源は再 びDTR真にセットされます(ただし、上の条件1の場合を除く)。

AC電源は、DSR(データ・セット・レディ)ラインをモニタして、バス・コントローラがいつデータの受付準備が できているかを判断します。AC電源は、各文字送信される前にこのラインをチェックし、DSRが偽であれば出力を 延期します。DSRが真になると、送信は再開されます。出力が延期されている間、AC電源はDTR偽の状態にしてお きます。バス・コントローラがDSRの真を確認して、AC電源が送信を完了できるようになるまで、デッドロックの 状態が存在します。

Control-Cは、GPIB装置のクリア・コマンドと同じものです。これは実行中の動作をクリアして、保留中の出力を放 棄します。AC電源がDTR偽の間のControl-C文字を認識するには、バス・コントローラはまずDSR偽をセットしなく てはなりません。

次図に示すように、標準RS-232インタフェース・ケーブルでは、DTRラインとDSRラインが入れ替えられます。他のバス・コントローラまたは言語の場合、ユーザは使用されるハードウェア・ハンドシェークの形態を決定しなければなりません。また、カスタマイズされたケーブルを構築して、必要に応じホールドオフ・ラインを接続しなければなりません。バス・コントローラがハードウェア・ハンドシェークを使用しない場合は、AC電源へのDSR入力を常時真の信号に結合してください。すなわち、バス・コントローラは常にデータの受付準備ができていなければならないということです。これを着実に行うには、ボー・レートを2400または4800ボーに設定してください。

図2-7. インタフェース・ケーブル・ライン

レスポンス・データ・ターミネータ

AC電源から送られたすべてのRS-232レスポンス・データは、一組のASCII文字<carriage return><newline>によって終 了します。GPIBレスポンス・データは1つの文字<newline>だけで終了しますから、この点が異なります。

電源投入時の点検

はじめに

この章で述べるテストに合格すると、AC電源の動作に対し高い信頼性が得られます。確認テストについては、付録 Bを参照してください。全性能テストについては、『サービス・ガイド』で説明しています。

注記 この章では、AC電源のフロントパネルの概略を述べています。詳しくは、第4章をご参照ください。

準備点検

警告 危険電圧 AC電源は出力時に425Vのピーク電圧を供給します。電流を流したときに出力端子や、出力に接続されている回路に接触すると、死亡事故を招く危険性があります。

- 1. 電源コードをAC電源に接続して、プラグを差し込みます(まだ、これが行われていない場合)。
- 2. フロントパネルの電源スイッチをオン(1)にします。
- 3. AC電源は、電源投入時にセルフテストを実施します。以下の項目が画面に表示されます。
 - a. 短いパターンですべての表示部分が点灯し、続いてモデル番号、ソフトウェアのバージョンが表示されます。

b. 表示がmeterモードに変わって、**Dis**インジケータがオンになり、その他のインジケータはすべてオフになり ます。「Meterモード」では、VOLTSにより出力電圧が示され、EREQにより出力周波数が示されます。電圧は0 または0に近い値で、周波数は60Hzになります。

注記: AC電源がセルフテスト中にエラーを検出した場合、ディスプレイのErrインジケータが点灯します。Shift とErrorキーを押すと、エラー番号が表示されます。本章の最後の「障害が発生した場合」をご覧ください。

- 4. AC電源のファンが動作していることを確認します。ファンの音と、装置から空気が出ていることを確認してく ださい。
- 5. Output on/offを一度だけ押します。Disインジケータがオフになり、CVインジケータがオンになります。
- 6. 装置の電源をオフにします。

出力点検

警告 危険電圧 AC電源は出力時に425Vのピーク電圧を供給します。電流を流したときに出力端子や、出力に接続されている回路に接触すると、死亡事故を招く危険性があります。

出力点検テストでは、電球を装置の出力に接続して、120VACの潜在的危険電圧を印加します。したがって、すべての接続部分や配線ケーブルは、正しくシールドしてください。

ここで述べるテストでは、電球を装置の出力に接続することによって、AC電源の出力電圧と出力電流を調べます。 この場合、次の備品を使用することをお勧めします。

- ◆ 100Wの電球1個
- ♦ 電球ソケット1個
- ◆ ソケットと装置の接続ケーブル
- 注記 AC電源の工場出荷時の電源投入ステートは、*RSTステートです。後で、*RCLロケーション0にス トアされたステートに従って装置の電源が投入されるようプログラムできます。これについては、 第4章で説明します。次の手順は、装置が*RSTのステートで電源投入されたものとします。

装置の電源がオフになっていることを確認してから、出力に対して以下の接続を行ってください。

図3-1. 検査接続

	手順	表示	説明
1.	装置の電源をオンにします。	Meter mode	Meterモードがアクティブになり、Disインジケータが オンになります。
2.	Voltageキーを押します。	VOLT 0.00	画面にはデフォルトの設定が表示されます。
3.	1, 2, 0 Enter を押します。	VOLT 120	∮1の出力を120Vにプログラムします。値の入力後、画 面はMeterモードに戻り、出力に対して電圧が印加され ていないことを示します。
4.	Output on/offを押します。	120V 60HZ	出力をオンにして、120Vの電圧をф1の電球に印加しま す。Disインジケータはオフに、CVはオンになります。
5.	Protect を押します。	PROT:CLEAR	画面に保護メニュー・リストが表示されます。
6.	▲か▼を押して、VOLT:PROTの 項目までスクロールします。	VOLT:PROT 500	画面に装置の過電圧保護トリップ電圧が表示されま す。過電圧保護電圧は、rms電圧でなくピーク電圧でプ ログラムされます。
7.	1, 6, 0, Enter を押します。	VOLT:PROT 160	OVPを前に設定した出力電圧よりも小さい100Vにプ ログラムします。
		0V 60 HZ	出力電圧よりも小さいOVP電圧が入力されたため、 OVP回路がトリップします。出力は0に落ち、CVがオ フ、Protがオンになります。
8.	Protect を押して、VOLT:PROT の項目までスクロールします。 その後 3, 2, 0, Enter を押しま す。	VOLT:PROT 320	 OVPを装置の出力電圧よりも大きい値にプログラムします。 注記: OVPトリップは、まずその状態の原因を取り除くまでクリアできません。
9.	ProtectとEnter を押します。	120V 60HZ	PROT:CLEARコマンドを実行して、出力を復元します。 Protがオフになり、CVがオンになります。

	手順	表示	説明
10.	ShiftとCurrentを押します。	CURR:LEV 5	デフォルトの出力電流リミットの設定を表示します。
11.	. 5 Enter	CURR:LEV .5	電流リミットを0.5Aにセットします。CCインジケータ がオンになり、装置が電流リミット・モードであるこ とを示します。電球の光がぼんやりしているのは、出 力電流を制限しようとして、出力電圧が降下したため です。
12.	Protectを押して、CURR:PROT の項目までスクロールします。 ↓を押してONを選択します。そ の後Enterを押します。	CURR:PROT ON	過電流保護回路がイネーブルになりました。その後出 カショートのため回路がトリップします。CCインジ ケータがオフ、OCPおよびProtインジケータがオンに なります。出力電流は0に近くなります。
13.	Output On/Offを押します。	0.5V 60HZ	出力はオフで、Disインジケータがオンになります。
14.	Protect を押して CURR:PROT の項目までスクロールします。 ↓を押してOFFを選択します。 その後、Enterを押します。	CURR:PROT OFF	過電流保護回路がディスエーブルになりました。Prot インジケータはオフになります。
15.	装置の電源をオフにします。		この次に装置の電源をオンにしたとき、装置は工場出 荷時デフォルトの*RSTになります。

障害が発生した場合

エラー・メッセージ

AC電源の障害は、電源投入時のセルフテスト中や動作中に起こる可能性があります。どちらの場合も、画面にエ ラー・メッセージが表示され、障害の原因が示されます。

セルフテスト・エラー

ShiftとErrorを押すと、エラー番号が表示されます。セルフテストのエラー・メッセージは、次のように表示されます。ERROR<n>

この場合の"n"は下の表に示した番号です。これが発生した場合、電源をオフにしてからもう一度オンの状態にして、エラーがまだ表示されているかどうかを確認します。エラー・メッセージが引き続き表示される場合は、修理が必要です。

エラー番号	不合格のテスト
Error 0	No error
Error 1	不揮発性RAM RDO部チェックサム・エラー
Error 2	不揮発性RAM CONFIG部チェックサム・エラー
Error 3	不揮発性RAM CAL部チェックサム・エラー
Error 4	不揮発性RAM WAVEFORM部チェックサム・エラー
Error 5	不揮発性RAM STATE部チェックサム・エラー
Error 6	不揮発性RAM LIST部チェックサム・エラー
Error 10	RAMセルフテスト
Error 11~18	DACセルフテスト1~8

表3-1. 電源投入時のセルフテスト
ランタイム・エラー・メッセージ

動作状態が異常のときは、フロントパネルの画面にOVLDと表示される場合があります。これは、出力電圧または 出力電流がメータ・リードバック回路の範囲を超えていることを意味します。フロント・パネルの画面に--------と表示された場合は、GPIB測定が進行中であることを示しています。ランタイムに起こりうるその他のエラー・ メッセージは、付録Cに掲載されています。

電源ヒューズ

AC電源が「機能せず」、画面がブランクでファンが回っていないようであれば、まず電源をチェックして電源電圧 がAC電源に適正に供給されているかを確認してください。もし電源が正常であれば、電源ヒューズ不良が考えられ ます。ヒューズに欠陥があるときは、ヒューズを交換してください。ただし、交換は一回だけとしてください。再 度ヒューズ不良が起こるようであれば、その原因を調べてください。それには、次の手順を実施してください。

警告 AC電源をオフにした後でも、内部には危険電圧が残っている可能性があります。したがって、ヒューズの交換は、専門の電気技術者だけが行ってください。

電源ヒューズは、AC電源の内部にあります。これを交換するときは、図3-2を参照し、以下を実施してください。

- 1. フロントパネルの電源スイッチを切り、電源コードを抜きます。
- AC電源のカバーを以下のように外します。
 a. 支持ストラップとダストカバーを固定している4つのネジを外します(T25トルクス・ドライバを使用)。
 b. カバーの底の裏側を広げて引き戻しカバーを外します。
- 3. 装置の両側にある2つのLEDを見ます。どちらかのLEDが点灯している場合は、内部にまだ危険電圧が残っています。この場合はLEDが消えるのを待ってから、先に進んでください(LEDが消えるまでに数分かかります)。
- 4. ヒューズを交換します。この場合、同じタイプのものだけを使用してください。スロー・ブロー・タイプの ヒューズは絶対に使用しないでください。
- 5. カバーを交換します。
- 6. AC電源に電源コードを接続します。
- 7. 電源を入れて動作を確認します。

図3-2. AC電源のヒューズの位置

3-電源投入時の点検

フロントパネルの操作

はじめに

本章では、以下のことについて説明します。

- ◆ フロントパネル制御の詳細
- 以下に関するフロントパネル・プログラミング例
 出力電圧および周波数のプログラム方法
 出力測定方法
 出力パルスおよびリストのプログラム方法
 出力変更のトリガ方法

フロントパネル説明

図4-1. フロントパネル外観

4-フロントパネルの操作

- ① ディスプレイ 14文字のブラウン管ディスプレイで、プログラミング・コマンドや測定値を表示します。
- ② インジケータ インジケータが点灯して、動作モードとステータス、を示します。
 - **61** 位相1が制御あるいはメータされています。
 - CV AC電源の出力は定電圧モードにあります。
 - CC AC電源の出力は電流リミット・モードにあります。
 - Unr AC電源の出力は制御されていない状態にあります。
 - Dis AC電源の出力はディスエーブル(オフ)の状態です。
 - Tran AC電源の出力は過渡信号を出力するように初期化されています。
 - OCP 過電流保護ステートがオンの状態にあります。
 - **Prot** AC電源の出力保護機能のひとつが動作しています。
 - Cal AC電源は校正モードにあります。
 - Shift シフト・キーが押され、代替キー機能がアクセスされています。
 - Rmt 選択したインタフェース (GPIBまたはRS-232) がリモート・ステートにあります。
 - Addr インタフェースがトークまたはリッスンに指定されています。
 - Err SCPIエラー・キューにメッセージがあります。
 - SRQ インタフェースからコントローラに対しサービスの要求が出ています。
 - Meter フロントパネルの測定機能は、ACのみ、DCのみ、またはAC+DCです。
 - AC+DC

Output AC電源出力結合は、ACのみDCのみ、またはAC+DCです。

- AC+DC
- ③ Voltage/ これらの回転パルス・ジェネレータにより、AC電源がローカル・モードのとき、出力電圧およ Frequency び周波数を設定できます。速さにより、反応が異なります。

速く回すと、値の粗調整ができます。

ゆっくり回すと、値の微調整ができます。

- ⑤ Line AC電源の電源をオン/オフします。
- ⑥ Systemキー Systemキーを使って次のことができます。
 - ローカル・モードに戻ります(フロントパネル制御)。
 - AC電源をGPIBアドレスにセットします。

RS-232インタフェースの通信ボー・レートとパリティ・ビットを設定します。

- SCPIエラー・コードを表示し、エラー・キューをクリアします。
- 最高16の機器構成をセーブおよびリコールします。
- ⑦ Functionキー ファンクション・アクセス・コマンド・メニューにより次のことができます。
 出力電圧、電流リミット、周波数、出力波形がプログラムできます。
 出力をオン/オフします。
 メータ機能を選択します。
 フロントパネルから即時トリガを送ります。
 過渡出力機能をプログラムします。
 - 保護機能をセットまたは解除します。
 - 出力位相を選択します。
 - 出力およびメータ機能の結合を選択します。
 - 装置ステータスをモニタします。
- ⑧ Entryキー エントリー・キーによって次のことができます。 プログラミングの値を入力します。 プログラミングの値を増分または減分します。
 AC電源を校正します。

System+-

これらのキーの詳しい使用法については、本章後半の例を参照してください。

図4-2. Systemキー

	青のラベルな 押すと、キーの できます。この	ンのキーです。本書では Shift と表されている場合もあります。このキーを りもうひとつの機能つまりシフトされた機能(例えばErrorなど)にアクセス Dキーを押すと、Shiftインジケータが点灯します。
Local	AC電源の選択 に変えるのに たはRemote-wi	されたインタフェースをリモート操作からローカル(フロントパネル操作) 吏用します。インタフェースのステートがすでにLocal, Local-with-Lockout,ま th-Lockoutの場合は、このキーを押してもなにも変化しません。
Address	システム・アト 電源のインタ ます。	ドレス・メニューをアクセスするために押します。このメニューを使って、AC フェースを構成できます。メニューの入力内容は不揮発性メモリに格納され
	表示	コマンドの機能
	ADDRESS <値	> GPIBアドレスを設定します。
	INTF <文字>	インタフェース(GPIBまたはRS232)を選択します。
	BAUDRATE < PARITY <文字	文字> RS-232ボー・レート (300, 600, 1200, 2400, 4800, 9600) を設定します。 > メッセージ・パリティ (NONE, EVEN, ODD, MARK, SPACE)
	LANG < 乂子>	言語(SCP1まだはE9012)を設定します。
	value = 数恒	°=). h
	$char = \sqrt{\pm 9}$	・ノノーク した使用して「下記のコマンド・リフトをフクロールできます」
	● 2 ●	を使って、ハフメータ・リストをスクロールでさます。
Recall	AC電源を以前 テートを呼び	に格納した状態に設定するとき押します。最高16(0~15)の格納されたス 出すことができます。
Shift Error	SCPI エラー・ す。これによ- ない場合は0が	キューに格納されているシステム・エラー・コードを表示するときに押しまって、エラー・キューも同時にクリアされます。キューにエラーがひとつも 表示されます。
Shift Save	現在のAC電源 ラメータは、A 15)のステー	のステートを不揮発性メモリにセーブするときに押します。セーブされるパ AC電源プログラミング・ガイドの*SAVにリストされています。最高16(0~ トがセーブできます。

Function+-

これらのキーの詳しい使用法については、本章後半の例を参照してください。

図4-3. Functionキー

即時動作キー

即時動作キーを押すと、該当する機能が**ただちに**実行されます。その他のファンクション・キーは下にコマンドが あって、そのキーを押すとアクセスできます。

Output On/Off このキーを使って、AC電源の出力をonとoffステートの間でトグルします。このキーを押すと ただちにその機能が実行されます。オフの状態のとき、AC電源出力はディスエーブルされ、 Disインジケータがオンになります。

Phase このキーは、3相AC電源でのみ使用できます Select

Shift

Trigger 即時トリガをAC電源に送ります。

スクロール・キー

スクロール・キーで、現在選択されているファンクション・メニューの選択項目を移動できます。

これらのスクロール・キーで、コマンド・リストの選択項目を移動できます。 ▼ を押す と、リストの次のコマンドが表示されます。 ▲ を押すと、リストの前のコマンドに戻り ます。コマンド・リストは循環しますので、どちらかのキーを押し続けることで開始位置に戻 ります。

これらシフトされたスクロール・キーは、Harmonic機能とList機能でのみ使用できます。これらのキーを押すと、高調波番号を指定する場合は0~50、リスト・ポイントを指定する場合は0~99の整数の間でステップします。これらのキーを押し続けると、高調波またはリスト・ポイントにすばやくアクセスできます。

これらのEntryキーで、特定コマンドに適用されるparameterリストの選択項目をスクロール できます。パラメータ・リストは循環しますから、どちらかのキーを押し続けると開始位置 に戻ります。コマンドに数値レンジがある場合、これらのキーで現在の値を増分または減分 できます。

Meter表示キー

Meter表示キーは、AC電源のメータリング機能を制御します。

Meter

このキーを押すと、メータ・メニュー・リストにアクセスできます。

*	-	-
衣	刁	7
	_	

表示	測定
<読み取り値>V <読み取り値>HZ	rms電圧および周波数(デフォルト)
<読み取り値>V <読み取り値>A	rms電圧およびrms電流
<読み取り値>A <読み取り値>HZ	rms電流および周波数
<読み取り値>V <読み取り値>W	rms電圧およびパワー
<読み取り値>CREST F	電流クレスト・ファクタ
<読み取り値>A PK REP	ピーク電流、繰り返し
<読み取り値>A PK NR	ピーク電流、非繰り返し ¹
<読み取り値>VA	皮相電力
<読み取り値>VAR	無効電力
<読み取り値>PFACTOR	電力ファクタ

.....

Input

このキーを押すと、Meter機能を特定できます。

表示

INP:COUP <文字> CURR:RANGE <文字>

WINDOW <文字>

コマンド機能

メータ結合を選択します (AC, DCまたはACDC)。 電流測定レンジ(HIGH LOW) HIGH => 5.7A rms電流測定用 LOW = < 5.7A rms電流測定用 高調波測定ウインドウ・メータを選択します (KBESSEL, RECT)

Shift Harmonic このキーを押すと、高調波メニュー・リストにアクセスできます。

表示

<読み取り値>A I:MAG: <索引>	電流高調波振幅
<読み取り値>゜I:PHASE: <索引>	電流高調波位相
<読み取り値>V V:MAG: <索引>	電圧高調波振幅
<読み取り値>°V:PHASE: <索引>	電圧高調波位相
<読み取り値> N:MAG: <索引>	ニュートラル電流高調波振幅
<読み取り値>°N:PHASE: <索引>	ニュートラル電流高調波位相
<読み取り値>°CURR:THD	電流トータル%高調波ひずみ
<読み取り値>°VOLT:THD	電圧トータル%高調波ひずみ

測定

注記:

1最後にクリアされたとき以降の最高ピーク電流を表示します。この選択項目にスクロールす るか、**Enter**か**Clear Entry**を押すと値はクリアされます。 読み取り値=戻された測定値

索引=0~50次の高調波番号を示す数値

文字=文字列パラメータ

と ▼ でコマンド・リストをスクロールできます。

- でパラメータ・リストをスクロールできます。 ♠ と 🕈
- **▲index** と **▼index** で高調波を指定します。

4-フロントパネルの操作

出力コントロール・キー

出力コントロール・キーは、AC電源のOutput機能を制御します。

Voltage このキーを押すと、電圧メニュー・リストにアクセスできます。

表示	コマンド機能
VOLT <値>	即時AC出力電圧を設定します。
VOLT:T <値>	トリガされる出力電圧を設定します。
VOLT:M <文字>	電圧モードを選択します(FIXED, STEP, PULSEまたはLIST)。
OFFSET <値>	即時DCオフセット電圧を設定します。
OFFSET:T <値>	トリガされるDCオフセット電圧を設定します。
OFFSET:M <文字>	DCオフセット電圧モードを選択します (FIXED, STEP, PULSEまたは
	$LIST)_{\circ}$
SLEW <値>	即時電圧スルー・レートをV/秒で設定します。
SLEW:T <値>	トリガされる電圧スルー・レートをV/秒で選択します。
SLEW:M <文字>	電圧スルー・モードを選択します (FIXED, STEP, PULSEまたはLIST)。
OFF:SLW <値>	即時DCオフセット電圧スルーをV/秒で設定します。
OFF:SLW:T <値>	トリガされるDCオフセット電圧スルーをV/秒で設定します。
OFF:SLW:M <文字>	DCオフセット電圧スルー・モードを選択します (FIXED, STEP, PULSEまたはLIST)。
ALC <文字>	電圧センス・ソースを選択します(INTまたはEXT)。
ALC:DET <文字>	電圧センス・ディテクタを選択します(RTIMEまたはRMS)。

Shift Current

このキーを押すと、電流リミットのメニュー・リストにアクセスできます。

このキーを押すと、周波数メニュー・リストにアクセスできます。

表示	コマンド機能
CURR:LEV <値>	即時rms出力電流リミットを設定します。
CURR:PEAK <値>	即時ピーク出力電流リミットを設定します。
CURR:PEAK:T <値>	トリガされるピーク出力電流リミットを設定します。
CURR:PEAK:M <文字	>ピーク出力電流リミット・モードを選択します(FIXED, STEP, PULSEま
	たはLIST)。

Freq

表示	コマンド機能
FREQ <値>	即時出力周波数を設定します。
FREQ:T <値>	トリガされる出力周波数を設定します。
FREQ:M <文字>	周波数モードを選択します (FIXED, STEP, PULSEまたはLIST)。
SLEW <値>	即時周波数スルー・レートをHz/秒で設定します。
SLEW:T <値>	トリガされる周波数スルー・レートをHz/秒で設定します。
SLEW:M <文字>	周波数スルー・モードを選択します (FIXED, STEP, PULSEまたはLIST)。

注記:

値 = 数値 文字 = 文字列パラメータ ▲ と ▼ でコマンド・リストをスクロールできます。 ◆ と ▼ でパラメータ・リストをスクロールできます。

Shift Phase	このキーを押すと、位相メニュー・リストにアクセスできます。	
	表示 PHASE <値> PHASE:T <値> PHASE:M <文字>	コマンド機能 即時出力位相を設定します。 トリガされる出力位相を設定します。 位相モードを選択します(FIXED, STEP, PULSEまたはLIST)。
Shape	このキーを押すと波形	ジメニュー・リストにアクセスできます。
	表示 SHAPE <文字> SHAPE:T <文字> SHAPE:M <文字> CLIP <値>	 コマンド機能 即時出力波形を選択します (SINE, SQUARE, またはCSIN)。 CSIN=クリップ正弦波 トリガされる出力波形を選択します (SINE, SQUARE, またはCSIN)。 CSIN=クリップ正弦波 波形モードを選択します (FIXED, STEP, PULSEまたはLIST)。 CSIN波形のクリップ・レベルを設定します。これは、クリッピングが開
		始されるポイントをTHDのパーセントまたはピーク振幅のパーセントで 指定します。
Pulse	このキーを押すと、ハ	パルス・メニュー・リストにアクセスできます。
	表示 WIDTH <値> COUNT <値> DCYCLE <値> PER <値> HOLD <文字>	 コマンド機能 パルス幅を設定します。 出力パルス数を設定します。 パルスのデューティ・サイクルをパルス周期のパーセントで設定します。 パルス周期を設定します。 他のパラメータが変わっても常に保たれるパラメータを選択します (WIDTHまたはDCYCLE)。
Shift Output	このキーを押すと、出	カメニュー・リストにアクセスできます。
	表示 OUTP:COUP <文字> *RST	コマンド機能 出力結合を選択します (ACまたはDC)。 *RSTコマンドを実行して、AC電源を工場出荷時のデフォルトの状態にし ます。
	TTLT:SOUR <文字>	Trigger Outソースを選択します(BOT, EOTまたはLIST)。 BOT = 過渡信号の始まり EOT = 過渡信号の終わり LIST = TTLTトリガ・リスト(『プログラミング・ガイド』参照)
	TTLI:STATE <文字> IMP:STATE <文字> IMP:REAL <値> IMP:REAC <値> PON:STATE <文字> RI <文字> DFI <文字>	Trigger Outステートを設定します (ONまたはOFF)。 出力インピーダンス・プログラミングを設定します (ONまたはOFF)。 出力インピーダンスの抵抗部分を設定します。 出力インピーダンスのリアクタンス部分を設定します。 パワーオン・ステート・コマンドを設定します (RSTまたはRCLO)。 リモート禁止モードを設定します (LATCHING, LIVEまたはOFF)。 ディスクリート・フォールト・インジケータのステートを設定します (ONまたはOFF)
	DFI:SOUR <文字>	DFIソースを選択します(QUES, OPER, ESB, RQSまたはOFF)。 (『プログラミング・ガイド』の第4章参照)
	注記:	

値 = 数値 文字 = 文字列パラメータ

	5	▼	でコマンド・リストをスクロールできます。
	と	+	でパラメータ・リストをスクロールできます。

4-フロントパネルの操作

保護およびステータス・コントロール・キー

ProtectキーとStatusキーは、AC電源の保護機能とステータス・レジスタを制御します。ステータス・レジスタの詳細については、プログラミング・ガイドの第4章をご参照ください。

Protect

このキーを押すと、保護メニュー・リストにアクセスできます。

表示	コマンド機能
PROT:CLEAR	動作しているすべての保護信号のステータス・レジスタをクリアします。
	信号を発している障害は、レジスタがクリアされる前に是止するか除外
	しなければなりません。
CURR:PROT <文字>	過電流保護機能をセットします(ONまたはOFF)。
VOLT:PROT <値>	過電圧保護レベルを設定します。1
DELAY <値>	時間遅延を設定して、AC電源出力のプログラミング後に保護障害をアク
	ティブにします。

Shift Status

このキーを押すと、ステータス・メニュー・リストにアクセスできます。以下のリストの?で終わるコマンドは、読み取られたときにレジスタをクリアすることに注意してください。このため、レジスタは **Enter** を押してから初めて読み取られ、コマンドにスクロールしただけでは読み取られません。

表示	コマンド機能
*CLS	*CLSコマンドを実行します。
STATUS:PRESET	STATus:PRESetコマンド実行します。
*ESR? <値>	Event Statusレジスタの値を戻します。
*STB <値>	Status Byteレジスタの値を戻します。
OPER:EVEN? <値>	STAT:OPER:EVENT?の値を戻します。
OPER:COND <値>	STAT:OPER:COND?の値を戻します。
QUES:EVEN? <値>	STAT:QUES:EVENT?の値を戻します。
QUES:COND <値>	STAT:QUES:COND?の値を戻します。

注記:

¹ ピーク電圧でプログラムされます (その他の電圧パラメータはrms電圧でプログラムされます)。 値 = 数値

文字=文字列パラメータ

▲ と▼ でコマンド・リストをスクロールできます。

▲ と ▼ でパラメータ・リストをスクロールできます。

トリガおよびリスト・コントロール・キー

Trigger Controlキーは、出力過渡信号トリガを制御します。Listキーは、出力リストの生成を制御します。リストは 最大100ポイントを含み、それぞれが出力の変更(過渡信号)を指定できます。トリガとリストのプログラミング詳 細については、『プログラミング・ガイド』の第4章を参照してください。

Trigger Control

このキーを押すと、トリガ・コントロール・リストにアクセスできます。

表示	コマンド機能
INIT:IMMED	過渡トリガ・シーケンスをすぐに開始します。
INIT:CONT <文字>	連続トリガの開始をセットします (ONまたはOFF)。
TRIG:SOUR <文字>	過渡トリガ・ソースを選択します (BUS, EXT, TTLTまたはIMM)。
DELAY <値>	トリガ遅延を秒単位で設定します。
ABORT	すべてのトリガ・シーケンスを打ち切ります。
SYNC:SOUR <文字>	トリガ同期ソースを選択します(PHASEまたはIMM)。
SYNC:PHAS <値>	同期の位相基準確度を度数で設定します。

Shift List

このキーを押すと、リスト・コマンドにアクセスできます。

コマンド機能

表示

COUNT <値>	リストの繰り返し回数を指定します。
DWEL: <索引> <値>	出力停止時間のリストを出します。
FREQ: <索引> <値>	出力周波数のリストを出します。
FSLW: <索引> <値>	出力周波数スルー・レートのリストを出します。
IPK: <索引> <値>	出力ピーク電流リミットのリストを出します。
OFFS: <索引> <値>	DC出力電圧のリストを出します。
OSLW: <索引> <値>	DCオフセット電圧スルー・レートのリストを出します。
PHASE: <索引> <値>	出力電圧位相角度のリストを出します。
SHAP: <索引> <文字>	出力波形のリストを出します。1
	(SINE, SQUAREまたはCSIN)。CSIN=クリップ正弦波
STEP <文字>	トリガに対するリスト応答(ONCEまたはAUTO)。
TTLT: <索引> <値>	Trigger Outパルスのリストを出します (0=パルスなし; 1=パルス)。
VOLT: <索引> <値>	AC出力電圧のリストを出します。
VSLW: <索引> <値>	出力電圧スルー・レートのリストを出します。

注記:

¹ユーザ定義の波形も、生成されたときにこのリストに表示されます。 値 = 数値 文字 = 文字列パラメータ 索引 = $0 \sim 99$ のリスト・ポイントを示す数値 ▲ と ▼ でコマンド・リストをスクロールできます。 ◆ と ▼ でパラメータ・リストをスクロールできます。 ▲ index と ▼ index でリスト・ポイントをスクロールします。リストの終わりに達すると、EOL が表示されます。値を編集する場合、 Enter を押すと自動的に次のリスト・ポイントに進みま

す。 **Clear Entry** を押すと、現在表示されているリスト・ポイントでリストが切り捨てられるか、 クリアされます。

Entryキー

これらのキーの詳しい使用法については、本章後半の例をご参照ください。

図4-4. Entryキー

フロントパネル・プログラミング例

下記の箇所には、これらの例があります。

- 出力電圧振幅の設定
- 出力周波数の設定
- 3 DCオフセットの設定
- 4 保護機能の設定
- 5 保護状態のクリア
- 6 ステップ、パルス、リスト過渡信号の生成
- 7 トリガ遅延と位相同期化のプログラミング
- 8 スルー・レートのプログラミング
- 9 ピーク流入電流の測定
- 10 GPIBアドレスやRS-232パラメータの設定
- 11 動作ステートのセーブとリコール

AC電源プログラミング・ガイドの例は、SCPIコマンドを用いた場合を除いて、ここで述べた例と同じものです。

1-出力電圧振幅の設定

注記 AC電源が出力できる最大電圧は、波形のピーク値である425V_{peak}までに制限されます。出力はrms ボルトの単位でプログラムされるので、プログラム可能な最大値は、選択した波形のピーク-rms比 によって異なります。正弦波の場合、プログラム可能な最大AC電圧は300V_{rms}です。その他の波形 での最大値は異なります。

AC電源の電源投入時におけるデフォルトの出力波形は60Hz(OVrms)の正弦波です。AC電源からの出力はありま せんが、これはデフォルトの出力ステートがOFFのためです(Disインジケータの点灯により示されます)。以下の 手順で出力を120Vrmsに設定します。

動作

表示

次の3つのうちいずれかの方法で、電圧を設定します。

- 1. Functionキーパッド上でVoltageを押します。Entryキーパッド上で**120 Enter**を押しま VOLT 120 す。これは正確な値を入力する最も簡単なやり方です。
- Functionキーパッド上でVoltageを押します。Entryキーパッド上で◆または◆を押し、 VOLT 127 現在の値を増分または減分します。この方法は、現在のパラメータ値を少しだけ変更す る場合に便利です。
- 3. パネルのVoltageつまみを回して、120Vにします。この方法は、電圧メニューを使わずに 120V 60Hz 適当な値を入力したいときに最適です。

注記: 出力をイネーブルにしないと、フロントパネルのメータに新しい電圧が表示されません。

出力をイネーブルにする方法

Functionキーパッド上で、Output On/Offを押して出力をイネーブルにします。 120V 60Hz
 Disインジケータがオフになり、電圧が出力端子に印加されていることを示します。

4-フロントパネルの操作

2-出力周波数の設定

AC電源の電源を投入したときの、デフォルトの出力周波数は60Hzです。例1の電圧出力が有効であるとして (120Vrms正弦波)、以下の手順で周波数を50Hzに変更します。

動作

電圧の設定と同じように、周波数も設定できます。

- 1. FunctionキーパッドのFreqを押します。Entryキーパッドで50 Enterを押します。 FREQ 50
- 2. Functionキーパッドの**Freq**を押します。Entryキーパッド上で含または↓を押し、現在の FREQ 50 値を増分または減分します。
- 3. パネルのFrequencyつまみを回して50Hzにします。

出力を確認するには、次の手順で測定できます。

 Meterメニューではこのとき、選択された出力位相の測定電圧および周波数を表示してい 120V 50Hz ます。▲と▼を押すと、Meterメニューの測定機能をスクロールできます。

3-DCオフセットの設定

動作

注記 AC電源が出力可能な最大電圧は425V_{peak}です。したがって、設定済みのAC電圧が425V_{peak}のリミットを超えるようなDCオフセットを設定することはできません(AC_{peak}+オフセット≦425V)。

AC電源のDC出力機能を使えば、出力電圧のDC成分とAC成分を個別に制御することが可能です。以下の手順で 100VのDCオフセットを設定します。

1.	FunctionキーバッドでVoltageを押し、	▼を押してOFFSETコマンドにアクセスします。	OFFSET 0)

- 2. Entryキーパッドで100 Enterを押します。
- 3. FunctionキーバッドでShift Outputを押し、出力カップリング・コマンドにアクセスします。 OUTP:COUP AC

注記:出力カップリングをACに設定すると、電圧オフセットの設定値に関係なく、AC電源はDC出力電圧を0にレギュレートします。

- 4. ↓とEnterを押して、出力カップリングをDCに変更します。
- 5. AC電源出力は、既に設定したAC rms電圧とDCオフセット電圧の結合となります。これ 156 V 50 Hz は、OUTPUT AC+DCインジケータにより示されます。フロントパネル・メータは現在、 100Vdcだけオフセットされた120Vrmsの正弦波を測定しています。これは、METER AC+DCインジケータにより示されます。

出力のAC成分またはDC成分だけを測定するには、次の手順を実施します。

- 6. FunctionキーバッドのInputを押し、メータ機能にアクセスします。
 INP:COUP ACDC

 そを押してDCパラメータを表示し、Enterを押します。これによりメータ機能がDCに変
 INP:COUP DC わり、出力のDC成分の電圧だけが測定されます。メータ・インジケータがMETER AC 100 V 50 Hz になります。

 正びInputた押します。Latterを押します。これによりメータ機能がDCに変
 INP:COUP DC 100 V 50 Hz
- 再びInputを押します。↓を押してACを表示し、Enterを押します。これによりメータ機 INP:COUP AC 能がACに変わり、出力のAC成分のrms電圧だけが測定されます。メータ・インジケータ 120 V 50 Hz がMETER DCになります。

表示

表示

FREQ 50

衣不

OFFSET 100

OUTP:COUP DC

DELAY .250

4. **過電流状態の原因が取り除かれた後**正常な動作に戻したい場合は、保護クリア・コマン FROT:CLEAR ドまでスクロールして**Enter**を押します。**OCP**インジケータはオフになります。

過電圧や過電流などの障害が検出された場合、出力がディスエーブルされるようにAC電源を設定できます。その他の自動障害状態(過熱など)のときにも出力はディスエーブルされます。AC電源の過電流保護機能を次のように設

5-保護状態のクリア

出力Protインジケータが点灯すると、以下の1つ以上の状態により、AC電源の出力がオフにされます。

OCPインジケータが点灯し、過電流保護回路がオンになったことを示します。

Entryキーパッドから、.250 Enterのように遅延を入力します。

メニューの遅延コマンドまでスクロールします。デフォルトの遅延は100msです。

障害を検出してから出力をディスエーブルするまでの時間遅延を設定したい場合、保護

インジケータ	説明	ビット番号	ビット重み
OV	過電圧保護の作動	0	1
OCP	rms過電流保護の作動	1	2
SOA	安全動作エリアの作動	2	4
OT	過熱保護の作動	4	16
RI	外部リモート禁止信号の発生	9	512
Rail	レール保護の作動	11	2048

動作

- 1. まず保護シャットダウンの原因をつきとめ、その原因を取り除いてから、装置の操作を続 行します。
- 2. 問題をつきとめるためにShift Statusを押します。
- 3. ▼を押してQuestionable Eventコマンドを出します。
- 4. Enterを押して、Event Registerでどのビットが設定されているか確認します。

注記:返される値は、設定されているビットの2進重みの総計です。例えば、20の値が示 すのは、ビット2(ビット重みは4)とビット4(ビット重みは16)が設定されているとい うことです。保護状態に割り当てられるビットとビット重みについては、前の表を参照 してください。保護状態の原因を取り除く方法については、次の表を参照してください。 また、ステータス・システムの詳細については、『プログラミング・ガイド』の第4章を 参照してください。

51

フロントパネルの操作-4

表示 PROT:CLEAR

CURR:PROT OFF

DELAY .1

3. Entryキーパッドで、★を一度押してONパラメータまでスクロールし、Enterを押します。 CURR:PROT ON

表示

QUES:EVEN?

*CLS

QUES:EVEN 20

動作

1. Finctionキーパッドの**Protect**を押します。

2. ↓を押して、過電流コマンドを出します。

4-保護機能の設定

定します。

状態	処置
OV状態	外部ソースがAC電源の出力に電圧を印加すると、通用過電圧状態が発生します。過電圧を排除するには、このソースを取り除いてください。より高い値への過電圧設定をプログラムすることもできますし、OV保護をオフにすることもできます。
	これ以外の場合には、出力電圧が、ユーザがプログラムした過電圧レベルを超えていることが 考えられます。この場合、プログラムされた過電圧レベルを超える電圧に装置が誤ってプログ ラムされているものと思われます。VOLTage:PROTectionコマンドにより、ピーク過電圧基準を 設定できます。
	注記: OV保護レベルは、rms電圧ではなく、ピーク電圧でプログラムすることに注意してください。
OCP状態	rms電流リミットの起動時、CURRent:PROTection:STATeコマンドが出力をディスエーブルする ようにプログラムされていると、装置はシャットダウンします。rms電流リミット・スレッショ ルドは、CURRentコマンドにより設定されます。この場合、CURRentコマンドによりプログラ ムされたリミットを超える電流を、なぜ負荷が引き込んでいるのかを調べてください。
SOA状態	AC電源の保護回路により、短時間の間、負荷は装置の連続能力を超えるピーク電流を引き込むことができます。これにより、多量の流入電流を必要とする負荷をオンにできます。ピーク電流持続時間と内部コンポーネント温度の組み合わせが所定のリミットを超えると、AC電源がシャットダウンします。
	これが起こるときは、AC電源の能力を超えるピーク出力電流を負荷が引き込んで所定時間を 超えて供給が行われたこと意味します。出力スルー・レートとピーク電流リミット設定を下げ ると、SOAシャットダウンを引き起こす状態を排除できます。
OT状態	AC電源の内部動作温度が所定のスレッショルドを超えると、出力がオフになります。この状態が発生した場合は、装置を冷却してから、操作を続行してください。
RI状態	外部信号の受け取り時に出力をディスエーブルにするようにリモート禁止入力がプログラム されていると、装置がシャットダウンします。リモート禁止入力は、OUTPut:RI:MODEコマン ドにより設定できます。この場合、どの外部イベントがRI入力上で信号を発生させているかを 調べてください。
レール状態	AC電源の出力に電力を供給する内部高電圧レールは、連続的にモニタされて電圧レベルが適 正かどうかが確認されます。この電圧が所定のレベルに保持されていないと、出力がシャット ダウンします。これが発生するのは、外部ソースがAC電源に過度な電力を送ったり、AC電源 から過度な電力が引き込まれたりする場合です。
	外部ソースを取り除いて、レール状態を排除してください。出力スルー・レートとピーク電流 リミット設定を下げると、レール・シャットダウンを起こす状態を排除できます。

6-過渡電圧モードを使って

AC電源の電圧は、以下の過渡操作モードでプログラムできます。

STEP 永久的に出力をトリガ値に変更します。

- PULSE Pulseメニュー・パラメータで設定した一定の時間だけ、出力をトリガ値に変更します。
- LIST Listメニューで入力したポイントによって決まる出力の複数の値を順番に並べます。
- FIXED 選択された機能の過渡操作をディスエーブルにします。

ステップ過渡信号

Voltageメニューで、AC電源がトリガを受信したときに出力に送る、オルタネートあるいはトリガ電圧レベルを指定 できます。デフォルトの過渡電圧レベルは0ボルトなので、最初にトリガ電圧を入力してからでないと、AC電源を トリガして出力振幅を変更することはできません。トリガのプログラムの詳しい方法については、プログラミング・ ガイドの第4章を参照してください。

以下の例では、電圧出力を120Vrmsに設定してから、102Vrmsに下げています。

	動作	表示
1.	Functionキーバットの Output On/Off を押して、出力をイネーブルにします。 Dis インジ ケータがオフになります。	0V 60Hz
2.	Voltage を押してVoltageメニューにアクセスします。Entryキーパッドで 120 Enter を押 します。	VOLT 120
3.	Voltageメニューに再びアクセスしてから▼を押し、トリガ電圧コマンドにアクセスします。	VOLT:T 0
4.	Entryキーパッド102 Enterを押します。	VOLT:T 102
5.	Voltageメニューに再びアクセスしてから▼を押し、電圧モード・コマンドにアクセスし ます。このとき、デフォルトのFIXEDモードになるはずです。FIXEDモードのときのAC 電源機能は、トリガには反応しません。Entryキーパッドで↑または↓を押して、モー ド・パラメータをスクロールします。STEPモードのところでEnterを押します。	VOLT:M STEP
6.	Trigger Control と Enter を押します。 これによって、 ひとつの即時トリガ操作が開始 (イ ネーブル)されます。	INIT:IMMED

7. Shift Triggerを押します。これによって、AC電源に即時トリガ信号が送られ、出力電圧 102V 60HZ が変更されます。これで、トリガ電圧値は、VOLTになります。

パルス過渡信号

以下の例では、AC電源の出力は、5.5ms、120Vrms(60Hz)の4パルスです。図では、トリガ、パルス、カウント、 パルス周期、デューティ・サイクルが表わされています。

図4-5. パルス過渡信号

	動作	表示	ŧ
1.	Voltage を押してVoltageメニューをアクセスします。Entryキーパッドの 102 Enter を押 します。	VOLT	102
2.	▼を押してトリガ電圧コマンドにアクセスします。Entryキーパッドの 120 Enter を押し ます。	VOLT	120
3.	Voltageメニューに再びアクセスしてから▼を押し、電圧モード・コマンドにアクセスし ます。Entryキーパッドで ↑ か ↓ を押し、モード・パラメータをスクロールしてPULSE を出してから Enter を押します。	VOLT:M	PULSE
4.	Pulse を押してPulseメニューにアクセスします。Entryキーパッドで.0833Enterを押して、5.5msのパルス幅を入力します。	WIDTH	.0833
5.	Pulseメニューにアクセスしてから▼を押し、デューティ・サイクル・コマンドにアクセ スします。Entryキーパッドから 3 3 Enter を押し、デューティ・サイクルを33%に変更し ます。	DCYCLI	E 33
6.	Pulseメニューにアクセスしてから▼を押し、パルス・カウントにアクセスします。Entry キーパッドから 4 Enter を押します。	COUNT	Г 4

- 7. Trigger ControlとEnterを押して、過渡トリガ・シーケンスを開始します。 INIT:IMMED
- 8. Shift Trigger を押します。これによって、AC電原に即時トリガ信号を送り、4つの出力 102V 60HZ パルスを生成します。

注記: AC電源の出力は、出力パルスの完了時に102Vに戻ります。

リスト過渡信号

リストは、複数または同期化過渡出力を生成する際に、最も融通のきく方法です。下図は、リストから生成された 電圧出力を表したものです。表示されている出力は、67ms、OVの間隔で区切られた、3つの異なるAC電圧パルス (33msで160V, 83msで120V, 150msで80V)を示します。

リストは、パルスを3つの電圧ポイント(ポイント0,2,4)として指定し、それぞれに対応する停止ポイントがあり ます。間隔は、3つの等間隔のゼロ電圧ポイント(ポイント1,3,5)です。シングル・トリガによる開始時、カウン ト・パラメータによって、リストは2度実行されます。

注記 Outputメニューから*RSTコマンドを実行し、AC電源をリセットします。以前にプログラムされた 機能はクリアされるまでは有効なため、この操作が必要になります。

図4-6. リスト過渡信号

	動作	表示
1.	Voltageを押してVoltageメニューにアクセスします。次に▼を押して、電圧モード・コマ ンドにアクセスします。	VOLT:M FIXED
2.	Entryキーパッドの ♠ か ♥ を押し、モード・パラメータをスクロールしてLISTを出して から、Enterを押します。	VOLT:M LIST
3.	Shift Listを押して、Listメニューにアクセスします。最初のメニュー・コマンドは、リ スト・カウントです。Entryキーパッドを使って、リスト・カウントをデフォルトの1か ら2に変更します。Enterを押します。	COUNT 2
4.	Listメニューに再びアクセスして、▼を押し停止時間リストにアクセスします。これに よって、各電圧ポイントが「オン」になっている時間を指定します。これはちょうど出 カパルスの幅です。最初の停止ポイント(0)が画面に表示されます。Entryキーパッド から停止ポイント0の値である.033およびEnterを押します。	DWEL 0 .033
5.	Enterキーを押すと、リストの次のステップに自動的に進みます。停止時間リストのポイント1~5に値.067、.083、.067、.150、.067を入力します。Enterを押して各値を入力します。リストの最後にあるポイント6で入力が終了します。	DWEL 1 .067 DWEL 2 .083 DWEL 3 .067
	注記: リスト・ポイントにアクセスして、編集を行うには、Shift ▲IndexまたはShift ▼ Indexを押します。	DWEL 4 .150 DWEL 5 .067 DWEL 6 EOL
6.	▼を押して電圧リストにアクセスします。リストで、対応する停止時間中の各出力ポイントの振幅を指定します。画面に電圧リストの最初のポイント(0)が表示されます。 Entryキーパッドで、 160 およびEnterを押します。	VOLT 0 160
7.	Enterキーを押すと、リストの次のステップに自動的に進みます。電圧リストのポイント 1~5に値0、120、0、80、0を入力します。Enterを押して各値を入力します。リストの 最後にあるポイント6で入力が終了します。	VOLT 1 0 VOLT 2 120 VOLT 3 0
	注記: リスト・ポイントにアクセスして、編集を行うには、Shift ▲IndexまたはShift ▼ Indexを押します。	VOLT 4 80 VOLT 5 0 VOLT 6 EOL
8.	▼を押してステップ・コマンドにアクセスします。デフォルト・モード (AUTO) にあ ることを確認します。これにより、指定したカウントの間、シングル・トリガでリスト が実行されます。	STEP AUTO
9.	Output On/Offを押して出力をイネーブルにします。Disアナンシエータが消えます。	0 V 60 Hz
10.	Trigger ControlとEnterを押して、即時トリガを開始します。	INIT:IMMED
11.	Shift Triggerを押します。これにより、AC電源に即時トリガが送信され、4つの出力パ ルスが生成されます。出力は、リストの終わりで即時値に戻ります。	0 V 60 Hz
	注記: リストをクリアするには、Clear Entry を押します。これにより、現在表示されて いるリスト・ポイントでリストが切り捨てられるか、クリアされます。それぞれのリス トに個別にアクセスして、クリアを行う必要があります。	

7-トリガ遅延と位相の同期化

AC電源のトリガ・システムを使って、トリガ遅延をプログラムしたり、出力変更を出力波形の特定位相角度に同期 化できます。

例①では、出力過渡信号は、トリガ信号の受信の直後にトリガされます。例②では、トリガが発生してから出力過 渡信号が開始するまでに、約16.7msの遅延時間が経過します。例③では、トリガ・ソースは位相の同期化について プログラムされます。つまり、トリガ信号の受信後に指定した位相角度が最初に発生したとき、過渡信号が発生し ます。

4-フロントパネルの操作

位相の同期化は、内部位相信号が基準とされることに注意してください。装置の出力は通常、この内部基準について0℃でオフセットされます。同期化過渡イベントは常に内部基準に関して起こるので、出力は通常、位相同期化用 にプログラムされた値をもった位相にあります(Phaseコマンドは、内部位相基準に関して出力のオフセットを変更 するために使います)。

図4-7. トリガ遅延と位相の同期化

例

 この例では、デフォルトのトリガ・パラメータを使用しています。まず、Voltageメ ニューにアクセスし、即時電圧レベルとトリガ電圧レベルをプログラムし、続いて電 圧過渡モードをプログラムします。
 次にTrigger Control Enterを押してから、Shift Triggerを押します。
 この例では、トリガ遅延を設定します。まず、Voltageメニューにアクセスし、即時電 圧レベルとトリガ電圧レベルをプログラムし、続いて電圧過渡モードをプログラムし
 VOLT 120 VOLT:T 150 VOLT:M STEP
 VOLT 120 VOLT:T 150 VOLT:M STEP

Trigger Controlを押します。▼を遅延パラメータにアクセスするまで押します。Entry キーパッドで.0167 Enterと押します。

次にTrigger Control Enterを押し、続いてShift Triggerを押します。

③ この例では位相syncモードを遅延なしで、ただし90°同期化して使用します。まず、 Voltageメニューにアクセスしてから、即時電圧レベルとトリガ電圧レベルをプログラムし、続いて電圧過渡モードをプログルラムします。

Trigger Controlを押します。▼を遅延パラメータにアクセスするまで押します。必要 DELAY 0 があれば、0に設定します。▼を押してsyncソース・コマンドにアクセスします。Entry SYNC:SOUR PHASE キーパッドで↓を押してPHASEを出します。**Enter**を押します。

Trigger Controlメニューに再びアクセスして、▼を押し、sync位相基準パラメータにアク SYNC:PHAS 90 セスします。Entryキーパッドで**90 Enter**と入力し、90℃位相基準をプログラムします。

Trigger Control Enterを押し、続いてShift Triggerと押します。

INIT:IMMED

表示

DELAY 0

DELAY .0167

INIT:IMMED

VOLT 120

VOLT:T 150

VOLT:M STEP

8-スルー・レートを使って波形を生成する方法

前出の例で示した通り、カスタムの波形を生成する方法はたくさんあります。プログラマブル・スルー・レートを 使うと、波形のカスタム化がさらにフレキシブルになります。下図は、プログラマブル・スルー・レートが過渡操 作モードで適用される手順を示したものです。

例①では、新しい出力電圧がプログラムされると必ず50V/秒の即時スルー・レートを使用します。例②では、50V/ 秒のトリガ・スルー・レートで電圧レベルを新しい値にステップします。例③では、パルスの開始時に50V/秒のト リガ・スルー・レートが使用されます。無限の即時スルー・レートは、パルスの立ち下がりエッジで適用されます。 例④では、スルー・レートは、電圧スルー・リストの値によって設定されます。

図4-8. プログラミング・スルー・レート

	例	表示
1	この例では、即時スルー・レートを使います。まず、Voltageメニューにアクセスして、 modeコマンドにアクセスするまで▼を押します。Entryキーパッドで↓を押してFIXED を出します。Enterを押します。	VOLT:M FIXED
	voltageメニューにアクセスして、スルー・コマンドにアクセスするまで▼を押します。 Entryキーパッドで 50 Enter を押して、スルー・レート50V/秒をプログラムします。	SLEW 50
	新しい即時電圧値が入力されるといつも、出力は50V/秒の新しいレベルにスルーします。	
2	Stepモードではトリガ・スルー・レートを使います。まず、Voltageメニューにアクセ スして、即時電圧レベルとトリガ電圧レベルをプログラムし、スルー・モードをSTEP に設定します。	VOLT 120 VOLT:T 150 VOLT:M STEP
	Voltageメニューにアクセスしてから、▼を押して、即時スルー・コマンドにアクセス します。Entryキーパッドで無限に等しい値を入力します。	SLEW: 9.9+E37
	Voltageメニューにアクセスし、トリガ・スルー・コマンドにアクセスするまで▼を押 します。Entryキーパッドで 50Enter といった値を入力し、50V/秒のトリガ・スルー・ レートを設定します。	SLEW:T 50
	次にTrigger Control Enterを押し、続いてShift Triggerを押します。	INIT:IMMED
	トリガが送られた後、stepモードでは、トリガされた値が新しい当面の値になります。	
3	Pulseモードでは、パルスのリーディング・エッジのトリガ・スルー・レートを使いま す。まず、Voltageメニューにアクセスして、即時電圧レベルとトリガ電圧レベルをプ ログラムし、スルー・モードをPULSEにセットします。	VOLT 120 VOLT:T 150 VOLT:M PULSE
	Pulseメニューにアクセスしてから、パルス・カウント、デューティ・サイクル、パル ス周期をプログラムします。	COUNT 2 DCYCLE 33 PER .0166
	Voltageメニューにアクセスしてから、▼を押して即時スルー・コマンドにアクセスし ます。Entryキーパッドで無限に等しい値を入力します。	SLEW: 9.9+E37
	Voltageメニューにアクセスして、トリガ・スルー・コマンドにアクセスするまで▼を 押します。Entryキーパッドで 50Enter といった値を入力し、50V/秒のトリガ・スルー・ レートを設定します。	SLEW:T 50
	Trigger Control Enterを押し、続いてShift Triggerを押します。	INIT:IMMED
4	電圧スルー・モードをLISTにセットすると、スルー・レートは電圧スルー・リストの 値によって設定されます。詳しいリストのプログラム方法については、List過渡信号の 例をご参照ください。その例の説明に基づいて、電圧値と停止時間をプログラムする 必要があります。リストにおける各ポイントのスルー・レートもプログラムしなけれ ばなりません (9.9+E37といった値であっても)。	

注記 停止時間を指定する場合、スルー・レートを考慮に入れてください。与えられたリスト・ポイント での停止時間が同一ポイントでのスルー時間より短い場合、次のリスト・ポイントがアクティブに なるまで、電圧はプログラムされたレベルには到達しません。

9-ピーク流入電流の測定

ピーク流入電流は、被テスト装置の電源が最初にオンになったときのみ発生するという意味で、非繰り返しの測定 です。測定を繰り返すには、装置の電源をオフにして、入力フィルタのコンデンサが完全に充電するのを待ちます。

この例では、フロントパネルのメータを使ってピーク流入電流を測定する方法を示しています。電圧は120Vrmsに 設定され、出力位相75°のとき出力はトリガされます。これは、流入電流が被テスト装置に流れる最適な条件です。

操作

表示

- 1. 即時電圧を0に設定します。Voltageを押してから、0とEnterを押します。 VOLT 0
- 2. トリガ電圧を120Vrmsに設定します。Voltageメニューの▼を押して、トリガ電圧コマン VOLT:T 120 ドにアクセスします。その後、**120 Enter**と押します。
- 3. 電圧モードをstepにします。Voltageメニューで▼を押して、modeコマンドにアクセス VOLT:M STEP します。↓を押してスクロールしSTEPに合わせてから、Enterを押します。
- トリガ電圧スルー・レートが可能な限り最も速い速度にセットされていることを確認 SLEW:T 9.9000+E37 してください。Voltageメニューでトリガ・スルー・コマンドにアクセスします。必要 があれば、もっと速いスルー・レートに設定し直します。
- ピーク電流リミットとrms電流リミットが高い値に設定されていることを確認してく ださい。Currentメニューで、rms電流リミット・コマンドにアクセスしてからピーク電 流リミット・コマンドにアクセスします。必要があれば、rms電流リミットとピーク電 流リミットをもっと高い値にリセットします(Agilent 6811Bでは、rms電流リミットを 3.25Aに設定できます。Agilent 6813Bでは、rms電流リミットを13Aに、ピーク電流リ ミットを80Aに設定できます)。
- 6. トリガ・ソースを基準位相角度に同期させます。Trigger Controlメニューで▼を押し、 SYNC:SOUR PHASE syncソース・コマンドにアクセスします。↓を押してPHASEを出し、Enterを押します。
- 7. 基準位相角度を75°に設定します。Trigger Controlメニューで▼を押して、sync位相コマ SYNC:PHAS 75 ンドにアクセスします。その後、**75 Enter**を押します。
- 8. フロントパネルから、1つの即時トリガの間、装置を開始またはイネーブルします。 INIT:IMMED Trigger ControlとEnterを押します。
- 9. meter機能が、非繰り返しのピーク流入電流を測定するように設定します。Meterメ 0A PK NR ニューで▼を押し、ピーク流入電流画面にアクセスします。
- 10. Output On/Offを押して、出力をイネーブルにします。
 0V 60HZ
- トリガを送信して、出力を0Vから120Vにステップします。Shift Triggerを押します。
 48A PK NR 流入電流がMeterに表示されます。

注記 高速・高電圧遷移がある場合は、出力コンデンサの電流によりCCインジケータが点灯します。この状態は正常です。これは、出力電圧の変更レートを制限するものです。CC操作モードが出力電 圧の変更レートを制限するのを避けたい場合は、ピーク電流リミットをより高い値にプログラムし てください。

10 - GPIBアドレスとRS-232パラメータの設定

AC電源の出荷時のGPIBアドレスは5に設定されています。このアドレスは、フロントパネルからAddressキーの Addressメニューを使ってしか変更できません。このメニューを使って、RS-232インタフェースを選択したり、RS-232 のボー・レートやパリティなどのパラメータを指定することもできます。

操作

GPIBアドレスを次のように設定します。

- 1. SystemキーパッドのAddressを押します。
- 2. Entryキーパッドから**7 Enter**のように、新しいアドレスを入力します。 ADDRESS 7

RS-232インタフェースを構築するには、次の手順を行います。

- 1. SystemキーパッドでAddressを押します。
- ▼を押すと、Addressメニューをスクロールできます。インタフェース・コマンドで、 INTF RS232 RS-232インタフェースを選択できます。ボー・レート・コマンドで、ボー・レートを BAUDRATE 600 選択できます。パリティ・コマンドではパリティを選択できます。 PARITY EVEN
- 3. ♠と♥キーを使って、インタフェース、ボー・レート、またはパリテイを選択します。

11 - 操作状態のセーブとリコール

不揮発性メモリに最高16(ロケーション0~15)のステートをセーブし、フロントパネルからそれらをリコールできます。プログラム可能な設定はすべてセーブできます。ただしリスト・データは、ステート・ストレージにセーブできません。不揮発性メモリには**1つの**リストだけがセーブされます。

操作

GPIBアドレスを次のように設定します。

- 1. 装置をセーブしたい操作ステートにします。
- 2. Shift Save 1 Enterと押してこのステートをロケーション1にセーブします。 *SAV 1
- セーブしたステートを呼び出すには、次の手順を実施します。
- 1. **Recall 1 Enter**と押して、ロケーションに1にセーブされているステートをリコール *RCL 1 します。

AC電源のパワーオン・ステートを選択するには、次の手順を実施します。

- 1. Functionキーパッドの**Shift Output**を押して、Outputメニューをスクロールし、PONス PON:STATE RST テート・コマンドを出します。

AC電源の不揮発性メモリをクリアするには、次の手順を実施します。

- 1. FunctionキーパッドのShift Outputを押して、*RSTコマンドまでスクロールします。次 *RST にEnterを押します。これにより、電源が工場初期設定に戻ります。
- 2. Shift Save 1 Enterを押して、これらの設定をロケーション1にセーブします。 *SAV 1
- 3. メモリのロケーション2~16に対してステップ2を繰り返します。
- *SAV 3

*SAV 2

- *SAV 4

...*SAV 16

表示

ADDRESS 5

ADDRESS 5

表示

仕様

仕様

表A-1には、AC電源の仕様を掲載しています。これは、周囲温度0~40℃で保証される仕様です。特に指定される場合を除いてこの仕様は、45Hz~1kHzの出力周波数レンジで30分間のウォームアップ後、ACカップリング・モードにおいて、抵抗負荷がある場合の正弦波を対象としています。出力周波数がDC~45HzのAC電源の動作については、表A-3を参照してください。

パラメータ			Agilent 6811B	Agilent 6812B	Agilent 6813B
位相:			1	1	1
出力定格	電力(VA) :	375VA	750VA	1750VA
	dc電力	(W) :	285W	575W	1350W
	rms電圧レ	シジ:	300V	300V	300V
	dc電圧レ	シジ:	±425V	±425V	±425V
	最大rms電流(リアルタイム・モー	・ド):	3.25A	6.5A	13A
	最大dd	電流:	2.5A	5A	10A
	最大繰り返しピーク	電流 ² :	40A	40A	80A
	最大非繰り返しピーク電流²(流入 能)	討):	40A	40A	80A
	クレスト・ファクタ ² (電	[流) :	12	6	6
出力周波数レンジ ³ :				dc; 45Hz-1kHz	
定電圧リップル/ノイズ	rms, フル・スケールを	基準:		-60dB	
(20kHz-10MHz)		rms:		300mV	
レギュレーション:	負荷 (rms検出モー	・ド) :	フル・スケールの0.5%		
	=	イン:	: フル・スケールの0.1%		
最大合計高調波ひずみ:			50Hz/60Hzで0.25%		
			45Hz~1kHzで最悪の場合1%		
負荷電力ファクタ能力:				0-1	
最大固定dcオフセット電圧 (AC結合):				100mV	
プログラミング確度	rms電圧 (45-100	Hz) :		0.15% + 0.3V	
(rms検出モード、25℃±5℃	(>100-500	Hz) :		0.5% + 0.3V	
時),±(出力の%+オフセッ ト)	(>500-1k	Hz) :	: 1% + 0.3V		
	唐	波数:		$0.01\% + 10 \mu Hz$	
	de	電圧:	0.1% + 0.5V	0.1% + 0.5V	0.5% + 0.3V
測定確度	rms電圧 (45-100	Hz) :		$0.3\% + 100 \mathrm{mV}$	
(25℃±5℃),±(出力の%	(>100Hz-500k	Hz) :		0.1% + 100 mV	
+オノセット)	(>500Hz-1k	Hz) :		0.2% + 100 mV	
	唐	波数:		$0.01\% \pm 0.01 Hz$	
	de	電圧:		0.03% + 150 mV	

表A-1. 性能仕様¹

A-仕様

表A-1. 性能仕様¹(続き)

パラメータ		Agilent 6811B/ 6812B/6813B
測定確度	高 レンジrms 電流	
(続き)	(45-100Hz) :	0.05% + 10mA
	(>100-500Hz) :	0.05% + 15mA
	(>500-1kHz) :	0.05% + 30mA
	低 レンジrms 電流	
	(45-100Hz) :	0.05% + 1.5mA
	(>100Hz-500kHz) :	0.05% + 8mA
	(>500Hz-1kHz) :	0.05% + 25mA
	高レンジ繰り返しピーク電流	
	(45-1kHz) :	0.05% + 150mA
	低レンジ繰り返しピーク電流	
	(45-1kHz) :	0.03% + 150mA
	低 レンジ 電力 (VA)	
	(45-100Hz) :	0.1% + 1.5VA + 1.2mVA/V
	(>100Hz-500kHz) :	0.1% + 2VA + 1.2mVA/V
	(>500Hz-1kHz) :	0.1% + 6VA + 1.2mVA/V
	高 レンジ 電力(VA)	
	(45-100Hz) :	0.1% + 1.5VA + 12mVA/V
	(>100Hz-500kHz) :	0.1% + 2VA + 12mVA/V
	(>500Hz-1kHz) :	0.1% + 6VA + 12mVA/V
	低レンジ電力(W)	
	(45-100Hz) :	0.1% + 0.3W + 1.2mW/V
	(>100Hz-500kHz) :	0.1% + 1.2W + 1.2mW/V
	(>500Hz-1kHz) :	0.1% + 2.5W + 1.2mW/V
	高レンジ電力(W)	
	(45-100Hz) :	0.1% + 0.3W + 12mW/V
	(>100Hz-500kHz) :	0.1% + 1.2W + 12mW/V
	(>500Hz-1kHz) :	0.1% + 2.5W + 12mW/V
	力率:	0.01
高調波測定確度	電圧振幅:	0.03% + 100mV + 0.2%/kHz
$(50/60 \text{Hz}, @25^{\circ}\text{C} \pm 5^{\circ}\text{C})$,	電流振幅 (低レンジ)	
± (出力の%+オノセット)	基本波:	0.03% + 1.5mA
	高調波2-49:	0.03% + 1mA + 0.2%/kHz
	電流振幅 (高レンジ)	
	基本波:	0.05% + 5mA
	高調波2-49:	0.03% + 3mA + 0.2%/kHz

1仕様は予告なしに変更されることがあります。

²これらの仕様は、表1-3の制限の対象です。

³本書の第1章「45Hz未満の動作」に述べられている動作条件に基づいてDC~45Hzのレンジで動作させることができます。

補足特性

表A-2に示した補足特性は、設計テストまたはタイプ・テストによって決まる代表的な性能値であり、保証される性能ではありません。

パラメータ	Agilent 6811B	Agilent 6812B	Agilent 6813B	
ac入力電圧レンジ (Vac):	87-106Vac (1	87-106Vac(100Vac公称值)		
	104-127Vac (20Vac公称值)	(200/208Vac公称值)	
	174-220Vac (20	174-220Vac(200/208Vac公称值)		
	191-254Vac (2	191-254Vac(230Vac公称值)		
最大入力電流 (rms) :	12A (100Vac)	28A (100Vac)	20A (230Vac)	
	10A (120Vac)	24A (120Vac)	22A (200/208Vac)	
	7.5A (200/208Vac)	15A (200/208Vac)	(
	6.5A (230Vac)	13A (230Vac)		
	100VA/700W	2500VA/1400W	3800VA/2600W	
ac入力周波数:		47-63Hz		
グランドに対するアイソレーション:		300Vrms/425Vdc		
出力電圧立ち上がり時間:		50µs		
(出力はフル抵抗負荷の総偏位の10%~90%または				
90%~10%の範囲で変動)				
リモート禁止応答時間:		15ms		
リモート・センス機能:	各負荷リ	ードの電圧降下は最高1	Vrmsまで	
プログラマブル出カインピーダンス・レンジ				
		0-1 Ω		
		20µH-1mH		
半均フロクラミンク催度				
rms電流リミット:		1.2% + 50mA		
	2% + 5Vp			
ac電圧スルー・レート (rms):	0.1V/s			
周波釵スルー・レート:	±0.01%			
半均ノロクラミンク方件能		125mV		
11115电江. do雷压·	250mV			
oc電圧スルー・レート (rms) ·	6mV/s			
		20 mV/s		
周波数スルー・レート:		0.05Hz/s		
過電圧プログラミング (OVP) :		2.Vneak		
ms電流:	2mA	4mA	4mA	
ピーク電流:	12.5mA	25mA	25mA	
出力周波数:		10µHz	1	
出力インピーダンス		•		
抵抗コンポーネント:		0.01 Ω		
誘導コンポーネント:		10µH		
平均測定分解能				
rms電圧:		10mV		
rms電流:	2mA			
THD(基本波振幅フル・スケールの5%):	表示値の5%+0.1%			
測定システム				
測定バッファ長:		4096ポイント		
測定/発生同期:	≦50µs			
測定捕捉サンプリング・レート・レンジ:	25-250µs			
電圧/電流ディジタイジング確度:	12ビット			
電圧/電流ティジタイジング分解能:	16ビット			
局調波測定時間(振幅):				
Meas:Curr:Harm? <n></n>		400ms		
Meas:Array:Harm?	1	10s		

表A-2. 補足特性

A-仕様

表A-2. 補足特性(続き)

パラメータ	Agilent 6811B	Agilent 6812B	Agilent 6813B	
遷移システム				
位相同期:	$\pm 100 \mu s$			
パルス幅レンジ:	$200 \mu s \sim 4.3 \times 10^5 s$			
パルス/停止時間確度:		$\pm 0.01\%$		
パルス・デューティ・サイクル・レンジ:		0~100%		
パルス・カウント・レンジ:		1~無限パルス		
LIST長:		1~100ステップ		
最小LIST停止時間:		200µs		
リスト・カウント・レンジ:		1~無限LIST繰り返し		
		200µs		
最大外部トリガ・レート:		1kHz		
		1024ポイント		
RS-232インタフェース機能				
ボー・レート:	300	, 600, 1200, 2400, 4800, 9	600	
データ・フォーマット	7ビットで偶数また	・は奇数パリティ・8ビッ	・トでパリティなし	
「 言語·	SCPL (プロ	グラマブル計測器用標:	進コマンド)	
	Serie (S	Elgar 9012 PIP		
トリガ・イン/トリガ・アウト特性				
トリガ・アウト (HC TTL出力):		V _{ol} =0.8V最大@1.25mA		
		V _{oh} = 3.3V最大@1.25mA	L	
トリガ・イン(10kプルアップ):		V:1=0.8V最大		
		$V_{11} = 2V \oplus 1$		
		· 10 2 · 24 ·		
	16 5Vdc (INH	ターミナル同十・FITタ	ーミナル同士・	
	INHター	シーマリル南土,1EIノ ミナルからシャーシ・ク	ブラント)	
INHターミナル	$L = 1.25 \text{mA} \oplus 1.25 \text{mA} \oplus$			
	$V_{i} = 0.5 V \oplus \pm$			
	v _{il} = 0.0V取入 V = 2V是小			
	v _{ih} -2V取小			
	tw = 100μ s 最小 td = $4m_2$ 件主信			
	u – 4ms 🐼 🏨			
機器ステート:	16 (0~15)			
ユーザ定義波形	10 (0 15)			
リスト・データ	12 ($((((((((((((((((((((((((((((((((((($			
GPIBインタフェース機能				
	SCPI, Elgar 9012 PIP			
インタフェース:	AH1, C0, DC1, DT1, E2, LE1, PP0, RL1, SH1, SR1, TE6			
プログラミング時間:	10ms			
	1年間			
申請中	UL 3111-1			
認証:	CSA 22.2 No. 1010-1			
準拠:	IEC 1010			
RFI抑制標準準拠:	CISPR-11, Group1 ,Class A			
外形寸法				
高さ(脚付きの場合12.7mmを足してください):	132.6mm			
幅:	425.5mm			
奥行き:	574.7mm			
本体質量:	28.2kg 32.7kg			
	31.58kg 36.4kg			

45Hz未満の低周波動作

以下の動作特性は、45Hzから1Hzまでの出力周波数にあてはまります。1Hzより低い場合、瞬時値がDC仕様に適合 します。AC電源出力は、正弦波、DCカップリング、リアルタイム・レギュレーションに設定されており、リニア 負荷に接続されています。

表A-3. 45Hz未満の低周波動作

A-仕様

検査と校正

はじめに

この付録では、Agilent 6811B/6812B/6813B AC電源の検査および校正の手順について説明します。ここでは、フロントパネルから、またはGPIBを介したコントローラからの手順について示します。

検査の手順は、すべての操作パラメータをチェックするものではありませんが、AC電源が正しく動作しているかどうかを検査します。性能テストでは、AC電源のすべての仕様についてチェックします。性能テストに関しては、AC 電源のサービス・マニュアルに記載されています。

検査や校正時には、AC電源出力をイネーブルにしなければなりません。したがって、手順は慎重に進めてください。出力端子には電圧と電流が流れているので、非常に危険です。

- **重要** AC電源の校正を行う前に、検査手順を実施してください。AC電源が検査手順を合格した場合は、 校正制限範囲内で動作しているので、再び校正する必要はありません。
- 警告 危険電圧 AC電源は、出力におて424Vのピーク電圧を供給します。電流を流したときに出力端子 や、出力に接続されている回路に触れると、死亡事故を招くおそれがあります。これらの手順は、 専門の電気技術者、または本装置について熟知した技術者だけが実施してください。

必要な装置

検査および校正には、以下の表に掲載されているものかまたはそれと同等の装置が必要です。

装置	特性	推奨モデル
ディジタル電圧メータ	分解能: 10nV@1V	Agilent 3458A
	表示值: 8.5桁	
	確度: >20ppm	
電流モニタ ¹	0.01Ω , ± 200 ppm, 10W	ガイドライン7320/0.01
比率変圧器 ²	30:1の比率, 50ppm, 45Hz~1kHz	
負荷抵抗器	20 Ω, 10A, 1800W最小	
インピーダンス抵抗器	1Ω,100W最小	
GPIBコントローラ	フル GPIB 機能	HPシリーズ200/300または同等のもの

表B-1. 必要な装置

¹4端子電流シャントは、負荷リードおよび接続での電圧降下により生じる出力電流測定エラーを排除するのに使用 します。負荷接続端子の内側に電流モニタ端子があります。この端子に電圧計を直接、接続してください。

² MIL-STD-45662A 4:1テスト装置比率条件に対する出力電圧リードバックを検査するときにだけ、比率変圧器が必要となります。

テストのセットアップ

図B-1はテストのセットアップを示したものです。必ず**フル**出力電流を導通できる太さの負荷リードを使用してくだ さい(第2章を参照してください)。

図B-1. 検査および校正テストのセットアップ

検査テストの実施

以下の手順は、第4章で述べたフロントパネルからのAC電源の操作方法を理解していることを前提としています。

GPIBコントローラから検査テストを実施している場合、コンピュータやシステム電圧メータと比べて、AC電源の 安定時間やスルー・レートが比較的遅いことを考慮しなければなりません。適切なWAITステートメントをテスト・ プログラムに挿入すると、テスト・コマンドに対応する時間をAC電源に与えることができます。

以下のテストを指示された順序で実施して、動作を検査します。

- 1. 電源投入時の点検
- 2. 電圧プログラミングとリードバック確度
- 3. 電流リードバック確度

電源投入と点検手順

第3章の説明に従って、電源投入時の点検を実施してください。

注記 AC電源が電源投入時のセルフテストに合格しない限り、検査テストには進めません。

AC電圧プログラミングとリードバック確度

このテストでは、AC電圧プログラミング、GPIBリードバック、およびフロントパネルのメータ機能について検査 します。GPIBによりリードバックされた値は、フロントパネルに表示された値と同じでなければなりません。

メータを2つ以上使用している場合や、メータとオシロスコープを使用している場合は、それぞれをセンス端子に接続してください。このとき、相互カップリング効果を避けるために接続には別々のリード線を使用してください。

操作

正常な結果

ミット(300V/45Hz)の範囲内です。

ミット(300V/400Hz)の範囲内です。

- 1. AC電源の電源がオフになっていることを確認します。図B-1のテスト・セットアップに示されているように、DVMと比率変圧器を接続します。
- 負荷をかけない状態でAC電源の電源をオンにします。Outputメ ニューで*RSTコマンドを実行し装置をリセットします。Output On/Offを押し、出力をイネーブルにします。出力電圧をプログラム します。
 CVインジケータがオンになります。 出力電流は0に近い値になります。

VOLT 300, FREQ 45, SHAPE:SIN, CURR 1

- 3. DVM¹とフロントパネル画面の電圧読み取り値を記録します。 読み取り値は指定の高レンジ・リ
- 4. FREQ 400をプログラムします。
- 5. DVM¹とフロントパネル画面の電圧読み取り値を記録します。 読み取り値は指定の高レンジ・リ
- 6. FREQ 1000、CURR:PEAK 40をプログラムします。
- DVM¹とフロントパネル画面の電圧読み取り値を記録します。
 読み取り値は指定の高レンジ・リ ミット(300V/1kHz)の範囲内です。

¹比率変換器を使用の場合は、DVMの読み取り値に変換率をかけます。

DC電圧プログラミングとリードバック確度

注意 このテストでは、比率変圧器の接続を外してください。

このテストでは、DC電圧プログラミング、GPIBリードバック、およびフロントパネル・メータ機能を検査します。 GPIBを介してリードバックされた値は、フロントパネルに表示された値と同じでなければなりません。DVMのマ イナス端子とCOM出力端子を接続して、±DCオフセット電圧を調べてください。

操作

正常な結果

- 1. AC電源の電源をオフにします。DVMとセンス端子を直接接続します。
- 負荷をかけない状態で6812A/6813A AC電源の電源をオンにします。
 Utputメニューで*RSTコマンドを実行して、装置をリセットします。
 Utput On/Offを押し、出力をイネーブルにします。出力電圧をプログラムします。

VOLT 0, OUTP:COUP DC, OFFSET 425

- 3. DVMとフロントパネル画面のDC電圧読み取り値を記録します。 読み取り値は指定のDC電圧プログラ ミングとリードバック・リミットの
- 4. OFFSET -425をプログラムします。
- 5. DVMとフロントパネル画面のDC電圧読み取り値を記録します。

出力電圧は-425Vdcになります。

範囲内です。

読み取り値は指定のDC電圧プログラ ミングとリードバック・リミットの 範囲内です。

RMS電流確度テスト

このテストでは、電流リードバックの検出モードにおける測定確度を検査します。

操作

- 1. AC電源の電源をオフにし、図B-1に示されているように、S1クローズの状態でDVM、8Ω負荷抵抗器、電流シャントを接続します。DVM と電流シャントはしっかり接続します。
- AC電源の電源をオンにし、Outputメニューで*RSTコマンドを実行 COLL し、装置をリセットします。Output On/Offを押し、出力をイネーブ パルにします。出力をプログラムします。

Agilent 6811Bの場合: VOLT 50, CURR:RANGE LOW, CURR:LEV 3.00

6811B以外のモデルの場合: VOLT 50, CURR:RANGE LOW, CURR:LEV 5.00

3. DVM電圧読み取り値を記録し、rms電流を計算します。

5. DVM電圧読み取り値を記録し、rms電流を計算します。

4. CURR:RANGE HIGHをプログラムします。

CCインジケータがオンになります。 出力電流は@3.0 (Agilent 6811B) または5.0A (6811B以外のモデル)

正常な結果

読み取り値は指定の リミット範囲内です。

CCインジケータがオンになります。 出力電流は@3.0 (Agilent 6811B) または5.0A (6811B以外のモデル)

> 読み取り値は指定の リミット範囲内です。

モデルAgilent 6811B	レポート No	日付	
テスト	最小仕様	記録結果	最大仕様
電圧プログラミ	ングおよびリードバッ	ック確度	-
300Vrms, 45Hz	299.250V	V	300.750V
フロントパネル画面リードバック	Vrms -190mV	V	Vrms + 190mV
300Vrms, 400Hz フロントパネル画面リードバック	298.200V Vrms — 190mV	V V	301.800V Vrms + 190mV
300Vrms, 1kHz	296.700V	V	303.300V
フロントパネル画面リードバック	Vrms -400mV	V	Vrms + 400mV
DCプログラミン	レグおよびリードバッ	ク確度	
プログラム確度、425Vdc	424.075V	V	425.925V
フロントパネル画面	Vdc -0.277V	V	Vdc + 0.277V
プログラム確度、-425Vdc フロントパネル画面	-424.075V Vdc -0.277V	V V V	-425.925V Vdc + 0.277V
電流リードバック			
ロー・レンジ ハイ・レンジ (Iout = 計算された出力電流 @ 60Hz)	Iout —0.0039A Iout —0.0095A	A A	Iout + 0.0039A Iout + 0.0095A

表B-2. 検査テストの記録(Agilent 6811B)

表B-3. 検査テストの記録(Agilent 6812B)

モデルAgilent	レポート No	日付	
テスト	最小仕様	記録結果	最大仕様
電圧プログラミングおよびリードバック確度			
300Vrms, 45Hz	299.250V	V	300.750V
フロントパネル画面リードバック	Vrms — 190mV	V	Vrms + 190mV
300Vrms, 400Hz	298.200V	V	301.800V
フロントパネル画面リードバック	Vrms — 190mV	V	Vrms + 190mV
300Vrms, 1kHz	296.700V	V	303.300V
フロントパネル画面リードバック	Vrms —400mV	V	Vrms + 400mV

DCプログラミングおよびリードバック確度			
プログラム確度、425Vdc フロントパネル画面	424.075V Vdc -0.277V	V V	425.925V Vdc + 0.277V
プログラム確度、-425Vdc フロントパネル画面	424.075V Vdc -0.277V	V V	-425.925V Vdc + 0.277V
電流リードバック			
ロー・レンジ ハイ・レンジ (Iout = 計算された出力電流 @ 60Hz)	Iout -0.0045A Iout -0.0175A	A	Iout + 0.0045A Iout + 0.0175A

表B-3. 検査テストの記録(Agilent 6812B)(続き)

モデルAgilent	レポート No	日付	
テスト	最小仕様	記録結果	最大仕様
電圧プログラミ	ングおよびリードバッ	ック確度	
300Vrms, 45Hz フロントパネル画面リードバック	299.250V Vrms — 190mV	V V	300.750V Vrms + 190mV
300Vrms, 400Hz フロントパネル画面リードバック	298.200V Vrms —190mV	V V	301.800V Vrms + 190mV
300Vrms, 1kHz フロントパネル画面リードバック	296.700V Vrms - 400mV	V V	303.300V Vrms + 400mV
DCプログラミン	ングおよびリードバッ	·ク確度	
プログラム確度、425Vdc フロントパネル画面	422.575V Vdc -0.277V	V V	427.525V Vdc + 0.277V
プログラム確度、-425Vdc フロントパネル画面	422.575V Vdc -0.277V	V V	-427.425V Vdc + 0.277V
電流リードバック			
ロー・レンジ ハイ・レンジ (Iout = 計算された出力電流 @ 60Hz)	Iout -0.0045A Iout -0.0175A	A A	Iout + 0.0045A Iout + 0.0175A

表B-4. 検査テストの記録(Agilent 6813B)
校正手順の実施

表B-1は、校正に必要な装置を掲載しています。図B-1は、テストのセットアップを表しています。

注記 毎回完全な校正を行う必要はありません。電圧または電流だけを校正して、「校正定数の保存」に 進むことができます。ただし、OVPを校正する前に、まず出力電圧を校正しなければなりません。

以下のパラメータが校正できます。

- ◆ AC出力電圧
- ◆ 出力電圧リードバック
- ◆ 過電圧保護 (OVP)
- ◆ AC出力電流

Shift

- ◆ 出力電流リードバック
- ◆ 出力インピーダンス

出力インピーダンスを校正する場合は出力電圧と出力電流を先に校正してください。

フロントパネル校正メニュー

校正機能では、Entryキーパッドを使用します。

Cal このキーを押すと、校正メニュー・リストにアクセスできます。

表示	コマンド機能
CAL ON <値>	正しいパスワードが入力されると、校正モードがオンになります。
CAL OFF	校正モードがオフになります。
CAL:LEV <文字>	シーケンスの次のステップに進みます (P1, P2, P3またはP4)。
CAL:DATA <値>	校正測定値を入力します。
CAL:VOLT:OFFSET	電圧オフセット校正を開始します。
CAL:VOLT:DC	DC電圧校正シーケンスを開始します。
CAL:VOLT:AC	AC電圧校正シーケンスを開始します。
CAL:VOLT:PROT	電圧保護校正を開始します。
CAL:CURR:AC	AC電流校正シーケンスを開始します。
CAL:CURR:MEAS	電流測定校正シーケンスを開始します。
CAL:IMP	出力インピーダンス校正シーケンスを開始します。
CAL:SAVE	校正定数を不揮発性メモリにセーブします。
CAL:PASS <値>	新しい校正パスワードを設定します。

注記:

值=数值

文字=文字列パラメータ

▲ と	▼	でコマンド	・リス	トをスク	ロールできます。
-----	---	-------	-----	------	----------

▲ と でパラメータ・リストをスクロールできます。

フロントパネル校正

警告 危険電圧 AC電源は出力時に425Vのピーク電圧を出力します。電力が流れたときに出力端子や、出力に接続されている回路に接触すると、死亡事故を招くおそれがあります。この手順は、専門の電気技術者かこの手順に熟練したエンジニアだけが実施してください。

以下の手順は、第4章で述べたフロントパネル・キーによるAC電源の操作方法を理解していることを前提としています。

校正モードのイネーブル

操作

- 1. **Output**を選択して、*RSTコマンドまでスクロールし、**Enter**を押すと、装置がリセッ *RST トされます。
- 2. 校正を開始するには、Shift Calを押し、CAL ON コマンドまでスクロールして Enterを CAL ON 0.0 押します。
- 3. Entryキーパッドから校正パスワードを入力し、Enterを押しますパスワードが正しけれ ば、Calインジケータがオンになります。

もしCAL DENIEDと表示された場合は、校正が変更されないように内部スイッチが設定 CAL DENIED されています(詳しくは、『サービス・マニュアル』参照)。

パスワードが正しくないと、エラーが発生します。有効なパスワードが失われた場合、 OUT OF RANGE 内部スイッチをセットしてパスワード保護を無効にすると、校正機能が回復します(詳しくは、『サービス・マニュアル』参照)。

電圧オフセット値の校正と入力

DVMのマイナス端子とCOM出力端子を接続します。校正ポイントがマイナス(負)になることもあるので、必要 に応じてCAL:DATAはマイナス値で入力してください。

操作

表示

表示

- 4. DVM (DVボルト・モード)を直接AC電源に接続します。比率変圧器または負荷抵抗 器は接続しません (図B-1参照)。
- 5. Shift Calibrationを押してから、CAL VOLT OFFSET コマンドまでスクロールしてEnter CAL:VOLT:OFFSET を押します。
- 6. Shift Calibrationを押してから、CAL LEV P1コマンドまでスクロールしてEnterを押し CAL:LEV P1 ます。
- 7. Shift Calibrationを押してから、コマンド・リストをCAL DATA 0.00までスクロールし CAL:DATA 0.00 ます。Entryキーパッドを使って、DVMに表示されている電圧値を入力します。
- 8. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓を使ってP2 CAL:LEV P2 パラメータまでスクロールし、Enterを押します。これで2番目の校正ポイントが選択されます。
- 9. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パットを使って、DVMに表示されているDC電圧値を入力します。
- 10. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓を使ってP3 CAL:LEV P3 パラメータまでスクロールし、Enterを押します。

75

- 11. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたDC電圧値を入力します。
- 12. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓を使ってP4 CAL:LEV P4 パラメータまでスクロールし、Enterを押します。
- 13. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示された4番目のDC電圧値を入力します。

これで、AC電源は新しい電圧オフセット校正定数をRAMに保持しています。

DC電圧ゲイン値の校正と入力

DVMのマイナス端子とCOM出力端子を接続します。校正ポイントがマイナス(負)になることもあるので、必要に応じてCAL:DATAはマイナス値で入力してください。

操作

表示

- 14. DVM (DVボルト・モード) をAC電源に直接接続します。図B-1に示されている比率変 圧器または負荷抵抗器は接続しません。
- 15. Shift Calibrationを押して、CAL VOLT DCコマンドまでスクロールし、Enterを押します。 CAL: VOLT:DC
- 16. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールし、Enterを押します。 CAL:LEV P1
- 17. Shift Calibrationを押して、コマンド・リストをCAL DATA 0.00までスクロールします。 CAL:DATA 0.00 Entryキーパッドを使って、DVMに表示されたDC電圧値を入力します。
- 18. Shift Calibrationを押して、CAL LEV P1 コマンドまでスクロールします。↓を使って、 CAL:LEV P2 P2パラメータまでスクロールし、Enterを押します。
- 19. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたDC電圧値を入力します。
- 20. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓を使って、 CAL:LEV P3 P3パラメータまでスクロールし、Enterを押します。
- 21. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたDC電圧値を入力します。

これで、AC電源は新しいDC電圧ゲイン校正定数をRAMに保持しています。

AC rms電圧ゲイン値の校正と入力

操作

表示

- 22. 図B-1に示されているように、比率変圧器を介してDVM(ACボルト・モード)を直接 AC電源に接続します。負荷抵抗器は接続しません。
- 23. Shift Calibrationを押して、CAL VOLT ACコマンドまでスクロールし、Enterを押します。 CAL:VOLT:AC
- 24. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールし、Enterを押します。 CAL:LEV P1
- Shift Calibrationを押して、コマンド・リストをCAL DATA 0.00までスクロールします。 CAL:DATA 0.00 Entryキーパッドを使って、DVMに表示されたAC rms電圧に変圧器の比率をかけた積を 入力します。

B-検査と校正

- 26. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓を使ってP2 CAL:LEV P2 パラメータまでスクロールし、Enterを押します。
- 27. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたAC rms電圧に変圧器の比率をかけた積を入力します。
- 28. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールします。↓ を押して、 CAL:LEV P3 P3パラメータまでスクロールし、Enterを押します。
- **29.** Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたDC電圧値を入力します。
- 30. Shift Calibrationを押して、CAL LEV P1 コマンドまでスクロールします。↓を使って、 CAL:LEV P4 P4パラメータまでスクロールし、Enterを押します。
- 31. Shift Calibrationを押して、CAL DATA 0.00コマンドまでスクロールします。Entryキー CAL:DATA 0.00 パッドを使って、DVMに表示されたAC rms電圧に変圧器の比率をかけた積を入力します。
- これで、AC電源は新しいAC rms電圧校正定数をRAMに保持しています。

OVPトリップ・ポイントの校正

操作

32. Shift Calibrationを押して、CAL VOLT PROTコマンドまでスクロールし、Enterを押し CAL:VOLT:PROT ます。

表示

表示

- 33. AC電源がOVP校正定数を計算するのを持ちます。校正が完了すると、画面はメータ・ モードに戻ります。
- これで、AC電源は新しいOVP校正定数をRAMに保持しています。

rms電流値の校正と入力

操作

- 34. DVM (AC rmsモード)、電流シャントおよび負荷抵抗器を、図B-1に示されているよう に、S1クローズの状態で、接続します。
- 35. Shift Calibrationを押して、CAL CURR ACコマンドまでスクロールしEnterを押します。 CAL:CURR:AC
- 36. Shift Calibrationを押して、CAL LEV P1コマンドまでスクロールしEnterを押します。 CAL:LEV P1
- Shift Calibrationを押して、コマンド・リストをCAL DATA 0.00までスクロールします。 CAL:DATA 0.00 電流値(DVM Acrms電圧/シャント抵抗)を計算し、Entryキーパッドを使ってrms電流 値を入力します。
- 38. Shift Calibrationを押して、CAL LEV P1 コマンドまでスクロールします。↓を使って、 CAL:LEV P2 P2パラメータまでスクロールしEnterを押します。
- Shift Calibration を押して、CAL DATA 0.00 コマンドまでスクロールします。電流値 CAL:DATA 0.00 (DVM AC rms電圧/シャント抵抗)を計算し、Entryキーパッドを使ってrms電流値を入 力します。
- これで、AC電源は新しいrms電流校正定数をRAMに保持しています。

表示

rms電流測定値の校正と入力

操作

- DVM (AC rmsモード)、電流シャントおよび負荷抵抗器を図B-1に示されているように、 S1クローズの状態で接続します。
- 41. Shift Calibrationを押して、CAL:CURR:MEASコマンドまでスクロールし、Enterを押 CAL:CURR:MEAS します。
- 42. Shift Calibrationを押して、CAL:LEV P1コマンドまでスクロールし、Enterを押します。 CAL:LEV P1
- Shift Calibrationを押して、コマンド・リストをCAL:DATA 0.00までスクロールします。 CAL:DATA 0.00 電流値(DVM AC rms電圧/シャント抵抗)を計算し、Entryキーパッドを使って、rms電 流値を入力します。
- 44. Shift Calibrationを押して、CAL LEV P1 コマンドまでスクロールします。↓ を使って、 CAL:LEV P2 P2パラメータまでスクロールし、Enterを押します。
- 45. Shift Calibrationを押して、CAL:DATA 0.00コマンドまでスクロールします。電流値(DVM CAL:DATA 0.00 AC rms電圧/シャント抵抗)を計算し、Entryキーパッドを使って、rms電流値を入力します。

これで、AC電源は新しいrms電流測定校正定数をRAMに保持しています。

出力インピーダンスの校正

操作

表示

- 46. 出力インピーダンス抵抗器をAC電源の出力としっかり接続します。他の装置と接続しな いように注意してください。
- **47.** Shift Calibrationを押して、CAL IMPコマンドまでスクロールしてEnterを押します。 CAL:IMP
- 48. AC電源が出力インピーダンス校正定数を計算するまで持ちます。インピーダンス校正 が完了すると、画面がmeterモードに戻ります。
- これで、AC電源は新しい出力インピーダンス校正定数をRAMに保持しています。

校正定数の保存

注意	校正定数を保存すると、不揮発性メモリにあるデータが上書きされます。新しい定数を永久に保存
	するかどうか決められないときは、ステップ46を省略できます。その場合、AC電源の校正データ
	は変更されません。

操作

+	-	-
衣	7	`

- 49. Shift Calibrationを押してから、CAL SAVEコマンドまでスクロールし、Enterを押します。 CAL:SAVE
- 50. Shift Calibrationを押してから、CAL OFFコマンドを選択してEnterを押すと、校正モー CAL OFF ドが終了します。*RSTと*RCLでも、校正ステートOFFの状態になります。

校正パスワードの変更

工場出荷時のデフォルトのパスワードは、0です。AC電源が校正モードのときは、パスワードを変更できます(この場合、現在のパスワードを入力する必要があります)。以下の手順で行います。

	操作	表示	
1.	Shift Calを押して、CAL ONコマンドまでスクロールします。	CAL ON	0.0
2.	Entryキーパッドから現在のパスワードを入力してEnterを押します。		

CAL:PASS 0

- 3. Shift Calを押して、CAL PASSコマンドまでスクロールします。
- 4. Entryキーパッドから新しいパスワードを入力します。最高6桁の数字と少数点(オプ ション)が使えます。

注記 パスワードなしで校正機能を操作したい場合は、パスワードを0(ゼロ)に変更します。

校正エラー・メッセージ

校正中に発生しうるエラーを、次の表に示します。

	表B-5.	GPIB校正エラー	・メ	ッセー	-ジ
--	-------	-----------	----	-----	----

エラー	意味
401	CALスイッチにより校正が妨げられています(これはハードウェア障害です。AC電源の
	サービス・マニュアルを参照してください。)。
402	CALパスワードが不正です。
403	CALモードがイネーブルではありません。
404	計算されたリードバックCAL定数が不正です。
405	計算されたプログラミングCAL定数が不正です。
406	CALコマンドのシーケンスが不正です。

GPIBでの校正

コントローラ・プログラミング・ステートメントの中でSCPIコマンドを使って、AC電源を校正することができま す。コントローラから校正を行う場合は、フロントパネルからの校正に熟知していなければなりません。フロント パネルの校正コマンドには、それぞれ対応するSCPIコマンドがあります。

SCPI校正コマンドについては、AC電源プログラミング・ガイドの第3章で説明しています。表B-3には、GPIBでの 校正中に発生する校正エラー・メッセージを掲載しています。

Agilent 校正プログラム・リスト

図B-2、シート1~3には、校正プログラムを掲載します。このプログラムは、HP BASICのもとで動作するコントロー ラ上で実行できます。電源アドレスは、705で、校正パスワードは0と想定しています。もし必要があれば、所定の ステートメントでこれらのパラメータを変更してください。

10 1 20 ! AC Source calibration program Rev B.00.00 30 1 40 ASSIGN @Ac TO 705 50 PRINT TABXY(5,5), "This program will calibrate the 6811B/12B/13B AC Power Solutions." 60 70 PRINT TABXY(5,7), "Equipment requirements are: Agilent3458A or equivalent DVM" PRINT TABXY(37,8),"0.01 ohm <200ppm Current Shunt" 80 PRINT TABXY(37,9),"20 ohm >1800 watt power resistor for all models" 90 100 PRINT TABXY(37,10),"1 ohm >100 watt impedance resistor" 110 PRINT TABXY(37,11), "30:1 <50ppm Ratio Transformer" 120 PRINT TABXY(3,13), "Ratio Transformer is required to when calibrating to MIL-STD-45662A. If the" 130 PRINT TABXY(2,14), "ratio transformer is not used the measurement uncertainty must be recalculated." 140 150 DISP "Press CONT to continue" 160 PAUSE 170 CLEAR SCREEN 180 PRINT TABXY(15,5),"1. Turn the AC Source off" 190 PRINT TABXY(15,7),"2. Disconnect all loads" 200 PRINT TABXY(15,9),"3. Connect the 3458A to the rear terminal block" 210 PRINT TABXY(15,11), "4. Set the 3458A to DC VOLTS" 220 PRINT TABXY(15,13), "5. Turn on the AC Source" 230 ! 240 DISP "Press CONT to begin DC OFSET and DC GAIN calibration" PAUSE 250 260 CLEAR SCREEN 270 PRINT TABXY(25,5), "CALIBRATING VOLTAGE OFFSET" 280 PRINT TABXY(20,7), "There are 4 points to be calibrated" 290 OUTPUT @Ac; "CAL:STATE ON" 300 OUTPUT @Ac; "CAL: VOLT: OFFS" 310 OUTPUT @Ac; "CAL:LEV P1" 320 WAIT 10 330 INPUT "Enter DC offset voltage reading from DVM", Off p1 340 PRINT TABXY(25,9), "Point 1 entered" 350 OUTPUT @Ac;"CAL:DATA";Off_p1 360 OUTPUT @Ac;"CAL:LEV P2" 370 WAIT 10 380 INPUT "Enter DC offset voltage reading from DVM",Off_p2 390 PRINT TABXY(25,11), "Point 2 entered" 400 OUTPUT @Ac;"CAL:DATA";Off p2 410 OUTPUT @Ac;"CAL:LEV P3" 420 WAIT 10 430 INPUT "Enter DC offset voltage reading from DVM", Off p3 440 PRINT TABXY(25,13), "Point 3 entered" OUTPUT @Ac;"CAL:DATA";Off p3 450 460 OUTPUT @Ac; "CAL:LEV P4" 470 WAIT 10 480 INPUT "Enter DC offset voltage reading from DVM", Off p4 490 PRINT TABXY (25, 15), "Point 4 entered" 500 OUTPUT @Ac;"CAL:DATA"; Off p4 510 WAIT 3 520 CLEAR SCREEN 530 PRINT TABXY(25,5), "CALIBRATING DC VOLTAGE GAIN" PRINT TABXY(20,7), "There are 3 points to be calibrated" 540 550 OUTPUT @Ac; "CAL:VOLT:DC"

図B-2. 校正プログラム・リスト (シート1/3)

B-検査と校正

560 OUTPUT @Ac; "CAL:LEV P1" 570 WAIT 10 INPUT "Enter DC voltage reading from DVM",Dc_p1 580 PRINT TABXY (25,9), "Point 1 entered" 590 OUTPUT @Ac;"CAL:DATA";Dc_p1 600 610 OUTPUT @Ac; "CAL:LEV P2" 620 WAIT 10 630 INPUT "Enter DC voltage reading from DVM",Dc_p2 PRINT TABXY(25,11), "Point 2 entered" 640 OUTPUT @Ac;"CAL:DATA";Dc p2 650 660 OUTPUT @Ac;"CAL:LEV P3" 670 WAIT 10 680 INPUT "Enter DC voltage reading from DVM",Dc p3 690 PRINT TABXY (25,13), "Point 3 entered" 700 OUTPUT @Ac;"CAL:DATA";Dc_p3 710 WAIT 3 720 CLEAR SCREEN 730 PRINT TABXY(5,10),"1. Connect the 3458A to the rear terminals via the ratio transformer" PRINT TABXY(18,12),"2. Set the 3458A to AC VOLTS" 740 750 1 760 DISP "Press CONT to begin AC PROGRAMMING and MEASUREMENT calibration" 770 PAUSE 780 CLEAR SCREEN 790 PRINT TABXY(18,5), "CALIBRATING AC POGRAMMING and MEASUREMENT" PRINT TABXY(20,7), "There are 4 points to be calibrated" 800 810 OUTPUT @Ac;"CAL:VOLT:AC" 820 OUTPUT @Ac;"CAL:LEV P1" 830 WAIT 10 840 INPUT "Enter AC rms (transformer ratio * DVM reading)", Ac pl PRINT TABXY(25,9), "Point 1 entered" 850 860 OUTPUT @Ac;"CAL:DATA";Ac p1 870 OUTPUT @Ac;"CAL:LEV P2" 880 WAIT 10 890 INPUT "Enter AC rms (transformer ratio * DVM reading)", Ac p2 PRINT TABXY(25,11), "Point 2 entered" 900 910 OUTPUT @Ac;"CAL:DATA";Ac p2 920 OUTPUT @Ac;"CAL:LEV P3" 930 WATT 10 INPUT "Enter AC rms (transformer ratio * DVM reading)",Ac_p3 940 950 PRINT TABXY(25,13), "Point 3 entered" 960 OUTPUT @Ac;"CAL:DATA";Ac p3 970 OUTPUT @Ac;"CAL:LEV P4" WAIT 3 980 990 INPUT "Enter AC rms (transformer ratio * DVM reading)", Ac_p4 1000 PRINT TABXY(25,15), "Point 4 entered" 1010 OUTPUT @Ac; "CAL:DATA"; Ac p4 1020 WAIT 10 1030 CLEAR SCREEN 1040 PRINT TABXY(15,10), "CALIBRATING OVERVOLTAGE PROTECTION" 1050 OUTPUT @Ac;"CAL:VOLT:PROT" 1060 PRINT TABXY(30,15), "WAIT" 1070 WAIT 30 1071 OUTPUT @Ac;"CAL:SAVE" 1072 OUTPUT @Ac; "CAL:STATE OFF" 1080 CLEAR SCREEN 1090 PRINT TABXY(15,5),"1. Turn off the AC Source" 1100 PRINT TABXY(15,7),"2. Connect the current shunt and 20 ohm load resistor, see fig.B-1"

図B-2. 校正プログラム・リスト (シート2/3)

```
1110 PRINT TABXY(15,9),"3. Connect the 3458A across the current shunt"
1120 PRINT TABXY(15,11),"4. Set the 3458A to AC rms VOLTS"
1130 PRINT TABXY(15,13), "5. Turn on the AC Source"
1140
1150 DISP "Press CONT to begin Current Program and Measurement calibration"
1160 PAUSE
1170 CLEAR SCREEN
1180 PRINT TABXY(22,5), "CALIBRATING CURRENT POGRAMMING"
1190 PRINT TABXY(20,7), "There are 2 points to be calibrated"
1191 OUTPUT @Ac; "CAL:STATE ON"
1200 OUTPUT @Ac; "CAL:CURR:AC"
1210 OUTPUT @Ac;"CAL:LEV P1"
1220 WAIT 10
1230 INPUT "Enter AC rms current ( DVM reading divided by shunt resistance )", Ai pl
1240 PRINT TABXY (25,9), "Point 1 entered"
1250 OUTPUT @Ac;"CAL:DATA";Ai p1
1260 OUTPUT @Ac;"CAL:LEV P2"
1270 WAIT 10
1280 INPUT "Enter AC rms current ( DVM reading divided by shunt resistance )", Ai p2
1290 PRINT TABXY(25,11), "Point 2 entered"
1300 OUTPUT @Ac;"CAL:DATA";Ai p2
1310 WAIT 10
1320 CLEAR SCREEN
1330 PRINT TABXY (22,5), "CALIBRATING CURRENT MEASUREMENT"
1340 PRINT TABXY(20,7), "There are 2 points to be calibrated"
1350 OUTPUT @Ac; "CAL:CURR:MEAS"
1360 OUTPUT @Ac;"CAL:LEV P1"
1370 WAIT 10
1380 INPUT "Enter AC rms current ( DVM reading divided by shunt resistance )", Am pl
1390 PRINT TABXY(25,9), "Point 1 entered"
1400 OUTPUT @Ac;"CAL:DATA";Am p1
1410 OUTPUT @Ac;"CAL:LEV P2"
1420 WAIT 10
1430 INPUT "Enter AC rms current ( DVM reading divided by shunt resistance )",Am p2
1440 PRINT TABXY(25,11), "Point 2 entered"
1450 OUTPUT @Ac;"CAL:DATA";Am p2
1460 WAIT 10
1470 OUTPUT @Ac;"CAL:SAVE"
1480 OUTPUT @Ac; "CAL:STATE OFF"
1490 CLEAR SCREEN
1500 !
1510 !
1520 PRINT TABXY(15,5),"1. Turn off the AC Source"
1530 PRINT TABXY(15,7),"2. Disconnect all equipment from the AC Source"
1540 PRINT TABXY(15,9),"3. Connect the 1 ohm impedance resistor, see fig.B-1"
1550 PRINT TABXY(15,11), "4. Turn on the AC Source"
1560 !
1570 DISP "Press CONT to begin Output Impedance calibration"
1580 PAUSE
1590 PRINT TABXY(15,10), "CALIBRATING OUTPUT IMPEDANCE"
1600 OUTPUT @Ac;"CAL:STATE ON"
1610 OUTPUT @Ac;"CAL:IMP"
1620 PRINT TABXY(30,15), "WAIT"
1630 WAIT 30
1640 OUTPUT @Ac;"CAL:SAVE"
1650 OUTPUT @Ac;"CAL:STATE OFF"
1660 CLEAR SCREEN
1670 PRINT TABXY (25,10), "CALIBRATION COMPLETE"
1680 END
```

図B-2. 校正プログラム・リスト(シート3/3)

B-検査と校正

エラー・メッセージ

エラー番号リスト

この付録では、AC電源から返されるエラー番号を示し、その解説をします。エラー番号は、2通りの方法で返されます。

- ◆ エラー番号がフロントパネルに表示されます。
- ◆ SYSTem:ERRor?の問合わせにより、エラー番号とメッセージがリードバックされます。SYSTem:ERRor?の問合 わせでは、エラー番号を変数に返し、NRIおよび文字列の2つのパラメータを返します。

以下の表は、SCPI構文エラーとインタフェース障害に関連するエラーの一覧です。また、装置依存のエラーも掲載 しています。括弧内の情報は標準エラー・メッセージの一部ではなく、説明上の単なる参考情報です。エラーが発 生すると、標準イベント・ステータス・レジスタが次のようにエラーを記録します。

エラー番号	エラー文字列[記述/説明/例]
	コマンド・エラー -100~-199 (標準イベント・ステータス・レジスタのビット5をセットします)
-100	Command error [一般]
-101	Invalid character
-102	Syntax eror [コマンドまたはデータ・タイプが認識できません]
-103	Invalid separator
-104	Data type error [例 "数値または文字列が予想される位置で、ブロック・データを受信しました"]
-105	GET not allowed
-108	Parameter not allowed [パラメータ数オーバー]
-109	Missing parameter [パラメータ数が足りません]
-112	Program mnemonic too long [最大12文字]
-113	Undefined header [この装置で使用できない操作]
-121	Invalid character in number ["9"を含む8進数データなど]
-123	Numeric overflow [指数係数が大きすぎます; 指数係数の大きさ>32k]
-124	Too many digits [数値が長すぎます; 255桁以上が受信されました]
-128	Numeric data not allowed
-131	Invalid suffix [装置が認識できないか、または装置が不適当です]
-138	Suffix not allowed
-141	Invalid character data [文字が間違っているかあるいは認識できません]
-144	Character data too long
-148	Character data not allowed
-150	String data error
-151	Invalid string data [例 ENDがクォーテーション・マークを閉じる前に受信されました]
-158	String data not allowed
-160	Block data error

表C-1. エラー番号

Г	
-161	Invalid block data [例: 十分な長さになる前にENDが受信されました]
-168	Block data not allowed
-170	Expression error
-171	Invalid expression
-178	Expression data not allowed
	実行エラー -200~-299(標準イベント・ステータス・レジスタのビット4をセットします)
-200	Execution error [一般]
-221	Settings conflict [check current device state]
-222	Data out of range [例 この装置では長すぎます]
-223	Too much data [メモリが足りません; ブロック、文字列、または式が長すぎます]
-224	Illegal parameter value [装置指定]
-225	Out of memory
-270	Macro error
-272	Macro execution error
-273	Illegal macro label
-276	Macro recursion error
-277	Macro redefinition not allowed
	システム・エラー -300~-399 (標準イベント・ステータス・レジスタのビット3をセットします)
-310	System error [一般]
-350	Too many errors [エラーが9個以上発生すると、キューのオーバーフローによりそのエラーは失われます。]
	Query Errors -400~-499(標準イベント・ステータス・レジスタのビット2をセットします)
-400	Query error [一般]
-410	Query INTERRUPTED [問合わせの応答が完了する前にDABまたはGETが続いています]
-420	Query UNTERMINATED [アドレスがトークにあり、プログラミング・メッセージの受信が完了していません]
-430	Query DEADLOCKED [コマンド文字列に問合わせが多すぎます]
-440	Query UNTERMINATED [無限応答の後]
	セルフテスト・エラー 0~99(標準イベント・ステータス・レジスタのビット3をセットします)
0	No error
1	Non-volatile RAM RDO section checksum failed
2	Non-volatile RAM CONFIG section checksum failed
3	Non-volatile RAM CAL section checksum failed
4	Non-volatile RAM WAVEFORM section checksum failed
5	Non-volatile RAM STATE section checksum failed
6	Non-volatile RAM STATE section checksum failed
10	RAM selftest
11-31	DAC selftest error, expected <n>, read <reading></reading></n>
	Errors 11, 12, 13, 14, 15 apply to DAC12 1A and 1B
	Errors 16, 17, 18 apply to DAC12 2A
	Errors 19, 20, 21 apply to DAC12 2B
	Errors 22, 23 apply to DAC12 4A
	Errors 24, 25 apply to DAC12 4B
	Errors 26, 27, 28 apply to DAC12 3A and 3B
	Errors 29, 30, 31 apply to DAC12 5A and 5B

表C-1. エラー番号(続き)

40	Voltage selftest error, output 1
41	Voltage selftest error, output 2
42	Voltage selftest error, output 3
43	Current selftest error, output 1
44	Current selftest error, output 2
45	Current selftest error, output 3
70	Fan voltage failure
80	Digital I/O selftest error
	装置依存エラー 100~32767(標準イベント・ステータス・レジスタのビット3をセットします)
200	Outgrd not responding
201	Front panel not responding
210	Ingrd receiver framming error
211	Ingrd uart overrun status
212	Ingrd received bad token
213	Ingrd received buffer overrun
214	Ingrd input buffer overrun
215	Outgrd output buffer overrun
216	RS-232 receiver framing error
217	RS-232 receiver parity error
218	RS-232 receiver overrun error
219	Ingrd inbuf count sysnc error
220	Front panel uart overrun
221	Front panel uart framing
222	Front panel uart parity
223	Front panel buffer overrun
224	Front panel timeout
401	CAL switch pevents calibration
402	CAL passcode is incorrect
403	CAL not enabled
404	Computed readback cal constants are incorrect
405	Computed programing cal constants ar incorrect
406	Incorrect sequence of calibration commands
600	Systems in mode: list have different list lengths
601	Requested voltage and waveform exceeds peak voltage capability
602	Requested voltage and waveform exceeds transformer volt-second rating
603	Command only applies to RS-232 interface
604	Trigger received before requested number of pre-trigger readings
605	Requested RMS current too high for voltage range
606	Waveform data not defined
607	VOLT, VOLT:SLEW, and FUNC:SHAPe modes incompatible
608	Measurement overrange
609	Output buffer overrun
610	Command cannot be given with present SYST:CONF setting

表C-1. エラー番号(続き)

C-エラー・メッセージ

電源電圧変換

警告 感電の危険性 電源を切った後も、装置内部には危険電圧が残っている可能性があります。したがって、この手順は専門の電気修理者技術者だけが行ってください。

装置のカバーを外す

- ◆ 電源を切り、電源コードをコンセントから抜きます。
- ◆ 2つの指示ストラップと外部カバーを固定している4つのネジを外します(T25トルクス・ドライバを使用)。
- ◆ カバーの底の裏面を若干拡げて引き戻し、フロントパネルから外します。
- ◆ 装置の両側の安全器内部にある2つのLEDを覗きます。どちらかのLEDが点灯している場合は、内部に危険電圧 が残っています。この場合は、LEDが消えるのを待ってから先に進んで下さい(これには、数分かかります)。

ジャンパ・ワイヤをチェックする(Agilent 6811B/6812Bの場合のみ)

- ◆ 電源コードのそばにある、装置側面の安全器の内部にある電源電圧ジャンパ・ワイヤを確認します(図D-1を参照)。
- ◆ 100Vまたは120Vを使用する場合は、100/120とラベルの付いたジャンパを設定します。 200V, 208Vまたは230Vを使用する場合は、200/220とラベルの付いたジャンパを設定します。

電源ジャンパをチェックする(全モデル)

- ◆ オン/オフ・スイッチのそばにある、装置側面の安全器の内部にある電源ジャンパを確認します。
- ◆ ラベルに示された電源電圧に従ってジャンパを構成します。208Vで装置を構成するときは、200V用として示さ れたジャンパ設定を使用します。

電力変圧器コネクタをチェックする(全モデル)

注記 100Vと120Vの間で、または200/208Vと230Vとの間で入力電圧を変更するときにだけ、この手順が 必要です。

- ◆ 内部カバーを固定しているネジを外します(T15トルクス・ドライバを使用)。
- ◆ 内部カバーを外します。
- ◆ フロントパネル裏のPCボードを固定しているネジを外します(T15トルクス・ドライバを使用)。

D-電源電圧変換

- ◆ 邪魔にならないようにボードを持ち上げます。そうすれば、一切ケーブルを抜く必要はありません。
- ◆ 電力変圧器の正面にあるコネクタを確認します。
- ◆ 100V, 200V,または208Vを使用するときは、200V inputとラベルの付いたコネクタにプラグを差し込みます。 120Vまたは230Vを使用するときは、240V inputとラベルの付いたコネクタにプラグを差し込みます。
- ◆ PCボードと内側カバーを再度はめ込みます。

注記 手順9と11で外したすべてのネジを確実にはめ込みます。

装置のカバーをはめる

- ◆ 外側カバーを再度はめ込みます。
- ◆ リアパネルのラベルの値を、新しい入力電圧定格に変更します。
- ◆ 電源部を再度接続して電源を入れます。

```
注記 電源電圧変換時にはヒューズの交換は必要ありません。
```


図D-1. 電源変換コンポーネント

索引

Addressキー, 4-3

Entry≠ → , 48 ←, 48 0...9, 48 Clear Entry, 48 E, 48 Enter, 48

-F-

-A-

-E-

Fixedモード,52 FLT接続,29 Freqキー,4-7

-G-

GPIB, 60 アドレス, 60 コネクタ, 30 GPIBシステム電源, 1-1 GPIBでの校正, B-13

-1-

-L-

INH接続, 29 Inputキー, 4-6

Listモード, 52, 54 Localキー, 4-3

-M-

Meter \neq - , 4-6

-0-

OCP状態,51 OT状態,51 Output On/Offキー,4-5 OVPトリップ・ポイント,校正手順,B-10 OVPトリップ・ポイントの校正,B-10 OV状態,51

-P-

Phase Select \neq - , 4-5 \pm LS β - \geq \neq μ , 3-1 Protect \neq - , 4-9 Pulse \neq - , 4-8

Pulseモード,53

-R-

Rail状態, 51 Recallキー, 4-3 RI状態, 51 rms電圧レギュレーション, 20 rms電流値の校正と入力, B-11 rms電流リミット, 20 RS-232, 60 インタフェース・ケーブル, 32 コネクタ インタフェースコマンド, 31 データ・フォーマット, 31 ハンドシェーク, 32 ピン出力, 31

-s-

Shape +--- , 4-8 Shift Calibration +---, 4-11 Shift Current +--- , 4-7 Shift ▼indexキー, 4-5 Shift Error ≠ −, 4-3 Shift Eキー, 4-11 Shift Harmonic +--, 4-6 Shift List +--, 4-10 Shift -キー, 4-11 Shift Output +-- , 4-8 Shift Phaseキー, 4-8 Shift Save +-, 4-3 Shift Statusキー, 4-9 Shift ▲indexキー, 4-5 シフト・キー,34 SOA状態, 51 SOAリミット,18 Stepモード, 52 SYSTem LOCal, 31 REMote, 31 RWLock, 31 ±S入力, 3-1

-T-

Trigger Controlキー, 4-10

-U-

索引

↑ ↓ \neq - , 4-5, 4-11 ▲ \forall \neq - , 4-5 Voltage \neq - , 4-7

安全性クラス,14 安全性の注意,14 位相の同期化,55 エラー番号表,83 エラー・メッセージ,36 オプション,14

ーかー

-V-

ーあー

確認テスト,33 過渡電圧モードを使って,4-16 危険電圧,67 機能,15 グラント,アース,14 検査テスト,34 AC測定確度, 69 AC電圧プログラミング,69 DC電圧プログラミング.70 DC測定確度,70 rms電流確度,70 検査テストとの記録,71 手順,68 必要なテスト装置,67 校正,73 ACrms電圧ゲイン値の入力,75 DC電圧ゲイン値の入力,75 rms電流測定値の入力,76,77 エラー・メッセージ,78 校正定数の保存,77 出力インピーダンス,77 手順,68 電圧オフセット値の入力,74 パスワード,78 プログラム・リスト,78 校正パスワードの変更, B-12

ーさー

サービス・ガイド,14 サポート・レール,2-2 システム・エラー・メッセージのまとめ,83 周波数制御,16 重量,2-2 出力 周波数の設定,50 接続,26 定格,17

特製,17 出力インピーダンス <1 ohm, 20 実行,20 無効,20 出力カップリング AC, 21, 50 DC, 21, 50 出力電圧 振幅の設定, 4-12 出力点検, 3-2 出力保護 クリア, 4-14 設定, 4-13 仕様,61 シリアル・ナンバー,1-2 スルー・レート プログラミング.57 寸法, 2-2 セルフテスト,33 操作状態 セーブ, 4-25 リコール, 4-25 操作特性,15

ーたー

ディジタル接続,29 低周波動作(<45Hz),17,65 定数,校正,B-12 手順, 検査, B-1 手順,電源投入と点検,B-3 テストのセットアップ,検査および校正,B-2 電圧制御.16 電圧レギュレーション rms, 20 リアルタイム,20 電源コード,23 設置,25 電源電圧変換, D-1 電源ヒューズ,3-6 電力コード,1-2 電力コンセント,1-2 トリガIN, 29 トリガOUT.29 トリガ接続,29 トリガ遅延,55 ーなー 入力電力, 1-2

ーはー

波形 生成,57 パルス・モード,4-17 ピーク電流能力,18 ピーク電流リミット,18 ピーク流入電流 測定,59 ピーク流入容量,18 ヒューズ,25 負荷ケーブル サイズ:インピーダンス,2-5 負荷レギュレーション,20 部品_オペレータによる交換が可能な,15 プログラム・リスト 校正,78 フロントパネル.39 インジケータ,40 キー,40 制御と表示器, 16, 39 フロントパネル・キー シフト・キー:▲および▼キー:↑および↓キー:←キー :Enterキー, 3-2 フロントパネル校正手順, B-8 フロントパネル校正メニュー, B-7 補足特性,63

ーまー

マニュアル,13,23 メニュー,フロントパネル校正メニュー,B-7

-6-

ラック・マウント・キット,14
リアルタイム電圧レギュレーション,20
リスト・モード,4-18
リモート・センシング,27
OVPに関する配慮,29
リモート・センス 接続,2-6
リモート・プログラミング,17
流入電流能力,19
冷却ファン,2-2
ローカル・センシング,3-1